Yoon Boram
CCS-7, Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Sci Rep. 2021 Sep 23;11(1):18965. doi: 10.1038/s41598-021-98392-z.
Many physics problems involve integration in multi-dimensional space whose analytic solution is not available. The integrals can be evaluated using numerical integration methods, but it requires a large computational cost in some cases, so an efficient algorithm plays an important role in solving the physics problems. We propose a novel numerical multi-dimensional integration algorithm using machine learning (ML). After training a ML regression model to mimic a target integrand, the regression model is used to evaluate an approximation of the integral. Then, the difference between the approximation and the true answer is calculated to correct the bias in the approximation of the integral induced by ML prediction errors. Because of the bias correction, the final estimate of the integral is unbiased and has a statistically correct error estimation. Three ML models of multi-layer perceptron, gradient boosting decision tree, and Gaussian process regression algorithms are investigated. The performance of the proposed algorithm is demonstrated on six different families of integrands that typically appear in physics problems at various dimensions and integrand difficulties. The results show that, for the same total number of integrand evaluations, the new algorithm provides integral estimates with more than an order of magnitude smaller uncertainties than those of the VEGAS algorithm in most of the test cases.
许多物理问题涉及多维空间中的积分,其解析解无法得到。这些积分可以使用数值积分方法来计算,但在某些情况下需要大量的计算成本,因此一种高效的算法在解决物理问题中起着重要作用。我们提出了一种使用机器学习(ML)的新型数值多维积分算法。在训练一个ML回归模型以模仿目标被积函数之后,该回归模型被用于评估积分的近似值。然后,计算近似值与真实答案之间的差异,以校正由ML预测误差引起的积分近似中的偏差。由于偏差校正,积分的最终估计是无偏的,并且具有统计上正确的误差估计。研究了多层感知器、梯度提升决策树和高斯过程回归算法这三种ML模型。在所提出的算法的性能在六个不同的被积函数族上得到了证明,这些被积函数族通常出现在不同维度和被积函数难度的物理问题中。结果表明,在大多数测试案例中,对于相同的被积函数评估总数,新算法提供的积分估计的不确定性比VEGAS算法小一个数量级以上。