Suppr超能文献

神经网络与模糊聚类技术在脑部磁共振图像分割中的比较。

A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain.

作者信息

Hall L O, Bensaid A M, Clarke L P, Velthuizen R P, Silbiger M S, Bezdek J C

机构信息

Univ. of South Florida, Tampa, FL.

出版信息

IEEE Trans Neural Netw. 1992;3(5):672-82. doi: 10.1109/72.159057.

Abstract

Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.

摘要

对磁共振(MR)脑部切片图像进行分割,然后通过三种方法进行合成着色,以给出原始数据的视觉表示:文字和近似模糊c均值无监督聚类算法,以及有监督的计算神经网络。给出了正常志愿者和选定的伴有水肿的脑肿瘤患者的初步临床结果。有监督和无监督分割技术提供了大致相似的结果。在志愿者研究中,通过视觉观察发现,与原始图像数据相比,无监督模糊算法显示出更好的分割效果。对于肿瘤/水肿或脑脊液边界等更复杂的分割问题,由于组织具有相似的MR弛豫行为,观察到专家之间的评级不一致,模糊c均值方法比前馈级联相关结果略受青睐。比较了这两种方法的各个方面,如有监督与无监督学习、时间复杂性以及对诊断过程的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验