Computer Engineering Department, University of Umm Al-Qura, Mecca, Kingdom of Saudi Arabia.
Skin Res Technol. 2011 Nov;17(4):469-78. doi: 10.1111/j.1600-0846.2011.00520.x. Epub 2011 Feb 22.
BACKGROUND/PURPOSE: Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas.
This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image.
A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images.
This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone.
背景/目的:自从引入表皮透光显微镜(ELM)以来,图像分析工具已经扩展到皮肤科领域,试图通过算法来重现临床评估。准确地对皮肤病变进行图像分割是实现早期、无创性诊断皮肤黑素瘤的关键步骤之一。
本文提出了两种基于频域处理和 K 均值聚类/模糊 K 均值聚类的图像分割算法。这两种方法能够分割和提取真实的边界,揭示出全局结构的不规则性(凹陷和凸起),这可能提示黑素瘤细胞过度生长或退化。作为预处理步骤,应用傅里叶低通滤波来减少皮肤病变图像中的周围噪声。
通过使用模拟病变图像的方法,对技术进行了定量比较,这些模拟病变图像覆盖有毛发,并添加了高斯噪声。还将所提出的技术与基于最优的已建立的阈值皮肤分割方法进行了比较。结果表明,对于具有不同边界不规则性特征的病变,在一系列不同的信噪比下,K 均值聚类和模糊 K 均值聚类分割方法提供了最佳的性能。在对代表高分辨率 ELM 图像的真实皮肤病变进行测试时,所提出的分割技术也表现出类似的性能。
本研究表明,使用低通滤波和 K 均值或模糊 K 均值聚类相结合的方法获得的分割结果优于仅使用 K 均值或模糊 K 均值聚类分割方法获得的结果。