Simpson P K
Orincon Corp., San Diego, CA.
IEEE Trans Neural Netw. 1992;3(5):776-86. doi: 10.1109/72.159066.
A supervised learning neural network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregate (union) of fuzzy set hyperboxes. A fuzzy set hyperbox is an n-dimensional box defined by a min point and a max point with a corresponding membership function. The min-max points are determined using the fuzzy min-max learning algorithm, an expansion-contraction process that can learn nonlinear class boundaries in a single pass through the data and provides the ability to incorporate new and refine existing classes without retraining. The use of a fuzzy set approach to pattern classification inherently provides a degree of membership information that is extremely useful in higher-level decision making. The relationship between fuzzy sets and pattern classification is described. The fuzzy min-max classifier neural network implementation is explained, the learning and recall algorithms are outlined, and several examples of operation demonstrate the strong qualities of this new neural network classifier.
本文描述了一种利用模糊集作为模式类别的监督学习神经网络分类器。每个模糊集都是模糊集超盒的聚合(并集)。模糊集超盒是一个由最小点和最大点定义的n维盒子,并具有相应的隶属函数。最小-最大点使用模糊最小-最大学习算法确定,这是一个扩展-收缩过程,它可以在单次遍历数据时学习非线性类边界,并提供在不重新训练的情况下合并新类和细化现有类的能力。使用模糊集方法进行模式分类本质上提供了一定程度的隶属度信息,这在更高层次的决策中非常有用。描述了模糊集与模式分类之间的关系。解释了模糊最小-最大分类器的神经网络实现,概述了学习和召回算法,并且几个操作示例展示了这种新型神经网络分类器的强大性能。