Nandedkar Abhijeet V, Biswas Prabir K
Department of Electronics and Tele-Communication Engineering, Shri Guru Gobind Singhji Institute of Engineering and Technology,Maharashtra 431606, India.
IEEE Trans Neural Netw. 2009 Jul;20(7):1117-34. doi: 10.1109/TNN.2009.2016419. Epub 2009 May 27.
Granular data classification and clustering is an upcoming and important issue in the field of pattern recognition. Conventionally, computing is thought to be manipulation of numbers or symbols. However, human recognition capabilities are based on ability to process nonnumeric clumps of information (information granules) in addition to individual numeric values. This paper proposes a granular neural network (GNN) called granular reflex fuzzy min-max neural network (GrRFMN) which can learn and classify granular data. GrRFMN uses hyperbox fuzzy set to represent granular data. Its architecture consists of a reflex mechanism inspired from human brain to handle class overlaps. The network can be trained online using granular or point data. The neuron activation functions in GrRFMN are designed to tackle data of different granularity (size). This paper also addresses an issue to granulate the training data and learn from it. It is observed that such a preprocessing of data can improve performance of a classifier. Experimental results on real data sets show that the proposed GrRFMN can classify granules of different granularity more correctly. Results are compared with general fuzzy min-max neural network (GFMN) proposed by Gabrys and Bargiela and with some classical methods.
粒状数据分类与聚类是模式识别领域中一个新兴且重要的问题。传统上,计算被认为是对数字或符号的操作。然而,人类的识别能力不仅基于处理单个数值的能力,还基于处理非数值信息团块(信息粒)的能力。本文提出了一种名为粒状反射模糊最小 - 最大神经网络(GrRFMN)的粒状神经网络,它可以学习和分类粒状数据。GrRFMN使用超盒模糊集来表示粒状数据。其架构包含一种受人类大脑启发的反射机制,用于处理类重叠问题。该网络可以使用粒状数据或点数据进行在线训练。GrRFMN中的神经元激活函数旨在处理不同粒度(大小)的数据。本文还讨论了对训练数据进行粒化并从中学习的问题。据观察,这样的数据预处理可以提高分类器的性能。在真实数据集上的实验结果表明,所提出的GrRFMN能够更准确地分类不同粒度的粒。将结果与Gabrys和Bargiela提出的通用模糊最小 - 最大神经网络(GFMN)以及一些经典方法进行了比较。