Department of Kinesiology, Penn State University, Rec.Hall-268N, University Park, PA 16802, USA.
Exp Brain Res. 2008 May;187(2):237-53. doi: 10.1007/s00221-008-1299-7. Epub 2008 Feb 16.
We considered a hypothetical two-level hierarchy participating in the control of vertical posture. The framework of the uncontrolled manifold (UCM) hypothesis was used to explore the muscle groupings (M-modes) and multi-M-mode synergies involved in the stabilization of a time profile of the shear force in the anterior-posterior direction. Standing subjects were asked to produce pulses of shear force into a target using visual feedback while trying to minimize the shift of the center of pressure (COP). Principal component analysis applied to integrated muscle activation indices identified three M-modes. The composition of the M-modes was similar across subjects and the two directions of the shear force pulse. It differed from the composition of M-modes described in earlier studies of more natural actions associated with large COP shifts. Further, the trial-to-trial M-mode variance was partitioned into two components: one component that does not affect a particular performance variable (V(UCM)), and its orthogonal component (V(ORT)). We argued that there is a multi-M-mode synergy stabilizing this particular performance variable if V(UCM) is higher than V(ORT). Overall, we found a multi-M-mode synergy stabilizing both shear force and COP coordinate. For the shear force, this synergy was strong for the backward force pulses and nonsignificant for the forward pulses. An opposite result was found for the COP coordinate: the synergy was stronger for the forward force pulses. The study shows that M-mode composition can change in a task-specific way and that two different performance variables can be stabilized using the same set of elemental variables (M-modes). The different dependences of the ΔV indices for the shear force and COP coordinate on the force pulse direction supports applicability of the principle of superposition (separate controllers for different performance variables) to the control of different mechanical variables in postural tasks. The M-mode composition allows a natural mechanical interpretation.
我们考虑了一个参与垂直姿势控制的两层级假设结构。使用非控制流形(UCM)假设框架来探索涉及稳定剪切力时间轮廓的肌肉群组(M 模式)和多-M 模式协同作用,剪切力沿前后方向作用于目标。站立的受试者被要求在视觉反馈的帮助下,向目标施加剪切力脉冲,同时尽量减少身体质心(COP)的移动。对整合肌肉激活指数的主成分分析确定了三个 M 模式。M 模式的组成在不同受试者和剪切力脉冲的两个方向上是相似的。这与与较大的 COP 移动相关的更自然的动作的早期研究中描述的 M 模式组成不同。此外,试验间 M 模式方差被分为两个分量:一个不影响特定性能变量(UCM 中的 V)的分量,以及其正交分量(ORT 中的 V)。如果 V(UCM)高于 V(ORT),我们认为存在一个多-M 模式协同作用,稳定了这个特定的性能变量。总的来说,我们发现了一个多-M 模式协同作用,稳定了剪切力和 COP 坐标。对于剪切力,这种协同作用对于向后的力脉冲很强,而对于向前的力脉冲则不显著。对于 COP 坐标则相反:向前的力脉冲的协同作用更强。该研究表明,M 模式组成可以以特定任务的方式改变,并且可以使用相同的基本变量(M 模式)稳定两个不同的性能变量。剪切力和 COP 坐标的ΔV 指数对力脉冲方向的不同依赖性支持叠加原理(不同性能变量的单独控制器)适用于姿势任务中不同机械变量的控制。M 模式组成允许进行自然的力学解释。