Suppr超能文献

西尼罗河病毒媒介蚊子的气象条件时间序列预测

Meteorologically conditioned time-series predictions of West Nile virus vector mosquitoes.

作者信息

Trawinski P R, Mackay D S

机构信息

Department of Geography, State University of New York at Buffalo, Buffalo, New York 14261, USA.

出版信息

Vector Borne Zoonotic Dis. 2008 Aug;8(4):505-21. doi: 10.1089/vbz.2007.0202.

Abstract

An empirical model to forecast West Nile virus mosquito vector populations is developed using time series analysis techniques. Specifically, multivariate seasonal autoregressive integrated moving average (SARIMA) models were developed for Aedes vexans and the combined group of Culex pipiens and Culex restuans in Erie County, New York. Weekly mosquito collections data were obtained for the four mosquito seasons from 2002 to 2005 from the Erie County Department of Health, Vector and Pest Control Program. Climate variables were tested for significance with cross-correlation analysis. Minimum temperature (T(min)), maximum temperature (T(max)), average temperature (T(ave)), precipitation (P), relative humidity (R(H)), and evapotranspiration (E(T)) were acquired from the Northeast Regional Climate Center (NRCC) at Cornell University. Weekly averages or sums of climate variables were calculated from the daily data. Other climate indexes were calculated and were tested for significance with the mosquito population data, including cooling degree days base 60 degrees (C(DD_60)), cooling degree days base 63 (C(DD_63)), cooling degree days base 65 (C(DD_65)), a ponding index (I(P)), and an interactive C(DD_65)-precipitation variable (C(DD_65) x P(week_4)). Ae. vexans were adequately modeled with a (2,1,1)(1,1,0)(52) SARIMA model. The combined group of Culex pipiens-restuans were modeled with a (0,1,1)(1,1,0)(52) SARIMA model. The most significant meteorological variables for forecasting Aedes vexans abundance was the interactive C(DD_65) x P(week_4) variable at a lag of two weeks, E(T) x E(T) at a lag of five weeks, and C(DD_65) x C(DD_65) at a lag of seven weeks. The most significant predictive variables for the grouped Culex pipiens-restuans were C(DD_63) x C(DD_63) at a lag of zero weeks, C(DD_63) at a lag of eight weeks, and the cumulative maximum ponding index (I(Pcum)) at a lag of zero weeks.

摘要

利用时间序列分析技术建立了一个预测西尼罗河病毒蚊媒种群的实证模型。具体而言,针对纽约伊利县的骚扰伊蚊以及尖音库蚊和致倦库蚊的组合群体,开发了多元季节性自回归积分移动平均(SARIMA)模型。从伊利县卫生局病媒与害虫控制项目获取了2002年至2005年四个蚊虫季节的每周蚊虫采集数据。通过互相关分析检验气候变量的显著性。最低温度(T(min))、最高温度(T(max))、平均温度(T(ave))、降水量(P)、相对湿度(R(H))和蒸散量(E(T))取自康奈尔大学的东北区域气候中心(NRCC)。根据每日数据计算气候变量的每周平均值或总和。计算了其他气候指数,并与蚊虫种群数据一起检验其显著性,包括60华氏度基础上的冷却度日(C(DD_60))、63华氏度基础上的冷却度日(C(DD_63))、65华氏度基础上的冷却度日(C(DD_65))、积水指数(I(P))以及一个C(DD_65)与降水量的交互变量(C(DD_65)×P(week_4))。骚扰伊蚊用(2,1,1)(1,1,0)(52) SARIMA模型进行了充分建模。尖音库蚊 - 致倦库蚊的组合群体用(0,1,1)(1,1,0)(52) SARIMA模型进行建模。预测骚扰伊蚊数量的最显著气象变量是滞后两周的交互变量C(DD_65)×P(week_4)、滞后五周的E(T)×E(T)以及滞后七周的C(DD_65)×C(DD_65)。对于尖音库蚊 - 致倦库蚊组合群体,最显著的预测变量是滞后零周的C(DD_63)×C(DD_63)、滞后八周的C(DD_63)以及滞后零周的累积最大积水指数(I(Pcum))。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验