Suppr超能文献

Modification of membrane heterogeneity by antipsychotic drugs: an X-ray diffraction comparative study.

作者信息

Tessier Cedric, Nuss Philippe, Staneva Galya, Wolf Claude

机构信息

UMRS 538 "Membrane traffic and signalization in epithelial cells," INSERM, UPMC, Univ Paris 06, AP-HP, Hopital ST Antoine, 27 rue de Chaligny, Paris, France.

出版信息

J Colloid Interface Sci. 2008 Apr 15;320(2):469-75. doi: 10.1016/j.jcis.2008.01.034. Epub 2008 Jan 31.

Abstract

Lipid mixtures are used to mimic biological membranes as they allow characterization of lipid lateral domains defined by their specific lipid molecular organization. Therapeutic agents such as antipsychotic drugs (AP) that may interact with lipids arrangement are likely to modify membrane biological properties. The present study describes the effect of 2 typical and 5 atypical antipsychotic drugs on an aqueous co-dispersion of a lipid mixture made of egg phosphatidylcholine (PC)/brain sphingomyelin (SM)/cholesterol (1/1/1 mol/mol/mol). Lamellar liquid-ordered (Lo) and liquid-disordered (Ld) phase coexistence was identified in the control and antipsychotic-added mixtures at 37 degrees C using synchrotron small-angle X-ray scattering methods (XRD). Intensity of the Bragg peaks was used to generate electron density profiles (EDP) allowing bilayer thickness calculation. All antipsychotic except from amisulpride induced a Lo phase bilayer thickness (d(pp)) decrease. Chlorpromazine, haloperidol, amisulpride and 9-0H-risperidone induced a Ld d(pp) increase while ziprazidone, risperidone and clozapine induced a Ld d(pp) decrease, indicating that antipsychotic atypicality is not associated with a specific d(pp) modification on our lipid model mixture. Results are discussed in terms of competition of antipsychotic compounds with cholesterol and mode of reorganization of lateral domains. A pharmacological relevance of these changes is also discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验