Night Vision Electronic Sensors Directorate, AMSEL-RD-NV-VISP-LET, Ft. Belvoir, VA.
IEEE Trans Image Process. 1997;6(1):92-102. doi: 10.1109/83.552099.
A probe-based approach combined with image modeling is used to recognize targets in spatially resolved, single frame, forward looking infrared (FLIR) imagery. A probe is a simple mathematical function that operates locally on pixel values and produces an output that is directly usable by an algorithm. An empirical probability density function of the probe values is obtained from a local region of the image and used to estimate the probability that a target of known shape is present. Target shape information is obtained from three-dimensional (3-D) computer-aided design (CAD) models. Knowledge of the probe values along with probe probability density functions and target shape information allows the likelihood ratio between a target hypothesis and background hypothesis to be written. The generalized likelihood ratio test is then used to accept one of the target poses or to choose the background hypothesis. We present an image model for infrared images, the resulting recognition algorithm, and experimental results on three sets of real and synthetic FLIR imagery.
基于探针的方法与图像建模相结合,用于识别空间分辨、单帧前视红外(FLIR)图像中的目标。探针是一种简单的数学函数,在像素值上进行局部操作,并生成可直接由算法使用的输出。探针值的经验概率密度函数是从图像的局部区域获得的,并用于估计具有已知形状的目标存在的概率。目标形状信息是从三维(3-D)计算机辅助设计(CAD)模型获得的。探针值的知识以及探针概率密度函数和目标形状信息允许编写目标假设和背景假设之间的似然比。然后使用广义似然比检验来接受目标姿态之一或选择背景假设。我们提出了一种用于红外图像的图像模型、由此产生的识别算法以及三组真实和合成 FLIR 图像的实验结果。