Sadjadi Firooz A
Lockheed Martin, 3400 Highcrest Road, Saint Anthony, Minnesota 55418-0000, USA.
Appl Opt. 2004 Jan 10;43(2):315-23. doi: 10.1364/ao.43.000315.
We report the development of a wavelet multiresolution texture-based algorithm that uses the probability density functions (PDFs) of the subband of the wavelet decomposition of an image. The moments of these pdfs are used in a clustering algorithm to segment the targets from their background clutter. Using the tools of experimental methodology, we evaluate the performance of this algorithm on real infrared imagery under varying algorithm parameter sets as well as scene, image, and false-alarm conditions. We estimate a set of multidimensional predictive analytic performance models that relate the detection probabilities as functions of false alarm, algorithm internal parameter, target pixel number, target-to-background interference ratio, target-interference ratio, and Fechner-Weber and local entropy metrics in the scene. These models can be used to predict performance in regions were no data are available and to optimize performance by selection of the optimum parameter and constant false-alarm values in regions with known scene and metric conditions.
我们报告了一种基于小波多分辨率纹理的算法的开发,该算法使用图像小波分解子带的概率密度函数(PDF)。这些概率密度函数的矩用于聚类算法,以将目标从背景杂波中分割出来。使用实验方法工具,我们在不同的算法参数集以及场景、图像和虚警条件下,评估了该算法在真实红外图像上的性能。我们估计了一组多维预测分析性能模型,这些模型将检测概率与虚警、算法内部参数、目标像素数量、目标与背景干扰比、目标干扰比以及场景中的费希纳 - 韦伯和局部熵度量相关联。这些模型可用于预测无数据区域的性能,并通过在已知场景和度量条件的区域中选择最佳参数和恒定虚警值来优化性能。