Suppr超能文献

基于小波变换子带概率密度函数的红外目标检测

Infrared target detection with probability density functions of wavelet transform subbands.

作者信息

Sadjadi Firooz A

机构信息

Lockheed Martin, 3400 Highcrest Road, Saint Anthony, Minnesota 55418-0000, USA.

出版信息

Appl Opt. 2004 Jan 10;43(2):315-23. doi: 10.1364/ao.43.000315.

Abstract

We report the development of a wavelet multiresolution texture-based algorithm that uses the probability density functions (PDFs) of the subband of the wavelet decomposition of an image. The moments of these pdfs are used in a clustering algorithm to segment the targets from their background clutter. Using the tools of experimental methodology, we evaluate the performance of this algorithm on real infrared imagery under varying algorithm parameter sets as well as scene, image, and false-alarm conditions. We estimate a set of multidimensional predictive analytic performance models that relate the detection probabilities as functions of false alarm, algorithm internal parameter, target pixel number, target-to-background interference ratio, target-interference ratio, and Fechner-Weber and local entropy metrics in the scene. These models can be used to predict performance in regions were no data are available and to optimize performance by selection of the optimum parameter and constant false-alarm values in regions with known scene and metric conditions.

摘要

我们报告了一种基于小波多分辨率纹理的算法的开发,该算法使用图像小波分解子带的概率密度函数(PDF)。这些概率密度函数的矩用于聚类算法,以将目标从背景杂波中分割出来。使用实验方法工具,我们在不同的算法参数集以及场景、图像和虚警条件下,评估了该算法在真实红外图像上的性能。我们估计了一组多维预测分析性能模型,这些模型将检测概率与虚警、算法内部参数、目标像素数量、目标与背景干扰比、目标干扰比以及场景中的费希纳 - 韦伯和局部熵度量相关联。这些模型可用于预测无数据区域的性能,并通过在已知场景和度量条件的区域中选择最佳参数和恒定虚警值来优化性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验