Khan Jesmin F, Alam Mohammad S, Bhuiyan Sharif M A
Department of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA.
Appl Opt. 2009 Jan 20;48(3):464-76. doi: 10.1364/ao.48.000464.
This paper presents a technique for automatic detection of the targets in forward-looking infrared (FLIR) imagery. Mathematical morphology is applied for the preliminary selection of possible regions of interest (ROI). An efficient clutter rejecter module based on probabilistic neural network is proposed, which is trained by using both target and background features to ensure excellent classification performance by moving the ROI in several directions with respect to the center of the detected target patch. Experimental results using real-life FLIR imagery confirm the excellent performance of the detector and the effectiveness of the proposed clutter rejecter module.
本文提出了一种用于自动检测前视红外(FLIR)图像中目标的技术。应用数学形态学对可能的感兴趣区域(ROI)进行初步筛选。提出了一种基于概率神经网络的高效杂波抑制模块,该模块通过使用目标和背景特征进行训练,通过将ROI相对于检测到的目标块中心在多个方向上移动,确保出色的分类性能。使用实际FLIR图像的实验结果证实了该检测器的出色性能以及所提出的杂波抑制模块的有效性。