J.P. Morgan and Co. Inc., New York, NY.
IEEE Trans Image Process. 1997;6(3):463-78. doi: 10.1109/83.557358.
We use a natural pixel-type representation of an object, originally developed for incomplete data tomography problems, to construct nearly orthonormal multiscale basis functions. The nearly orthonormal behavior of the multiscale basis functions results in a system matrix, relating the input (the object coefficients) and the output (the projection data), which is extremely sparse. In addition, the coarsest scale elements of this matrix capture any ill conditioning in the system matrix arising from the geometry of the imaging system. We exploit this feature to partition the system matrix by scales and obtain a reconstruction procedure that requires inversion of only a well-conditioned and sparse matrix. This enables us to formulate a tomographic reconstruction technique from incomplete data wherein the object is reconstructed at multiple scales or resolutions. In case of noisy projection data we extend our multiscale reconstruction technique to explicitly account for noise by calculating maximum a posteriori probability (MAP) multiscale reconstruction estimates based on a certain self-similar prior on the multiscale object coefficients. The framework for multiscale reconstruction presented can find application in regularization of imaging problems where the projection data are incomplete, irregular, and noisy, and in object feature recognition directly from projection data.
我们使用对象的自然像素类型表示来构建几乎正交的多尺度基函数,该表示最初是为不完全数据层析成像问题开发的。多尺度基函数的几乎正交行为导致了一个系统矩阵,该矩阵将输入(对象系数)和输出(投影数据)相关联,该系统矩阵非常稀疏。此外,该矩阵的最粗尺度元素捕获了成像系统的几何形状引起的系统矩阵的任何病态。我们利用此功能按比例对系统矩阵进行分区,并获得仅需要对良态且稀疏矩阵进行反演的重建过程。这使我们能够从不完全数据中构建层析重建技术,其中可以在多个尺度或分辨率下重建对象。在有噪声的投影数据的情况下,我们通过基于多尺度对象系数的特定自相似先验来计算最大后验概率 (MAP) 多尺度重建估计,从而扩展我们的多尺度重建技术以明确考虑噪声。所提出的多尺度重建框架可应用于投影数据不完整、不规则和有噪声的成像问题的正则化以及直接从投影数据中进行对象特征识别。