J.P. Morgan & Co. Inc.
IEEE Trans Med Imaging. 1996;15(1):92-101. doi: 10.1109/42.481444.
The authors represent the standard ramp filter operator of the filtered-back-projection (FBP) reconstruction in different bases composed of Haar and Daubechies compactly supported wavelets. The resulting multiscale representation of the ramp-filter matrix operator is approximately diagonal. The accuracy of this diagonal approximation becomes better as wavelets with larger numbers of vanishing moments are used. This wavelet-based representation enables the authors to formulate a multiscale tomographic reconstruction technique in which the object is reconstructed at multiple scales or resolutions. A complete reconstruction is obtained by combining the reconstructions at different scales. The authors' multiscale reconstruction technique has the same computational complexity as the FBP reconstruction method. It differs from other multiscale reconstruction techniques in that (1) the object is defined through a one-dimensional multiscale transformation of the projection domain, and (2) the authors explicitly account for noise in the projection data by calculating maximum a posteriori probability (MAP) multiscale reconstruction estimates based on a chosen fractal prior on the multiscale object coefficients. The computational complexity of this maximum a posteriori probability (MAP) solution is also the same as that of the FBP reconstruction. This result is in contrast to commonly used methods of statistical regularization, which result in computationally intensive optimization algorithms.
作者代表了滤波反投影(FBP)重建中标准斜坡滤波器算子在由 Haar 和 Daubechies 紧支撑小波组成的不同基中的表示。斜坡滤波器矩阵算子的这种多尺度表示大约是对角的。使用具有更多消失矩的小波时,这种对角近似的准确性会更好。这种基于小波的表示使作者能够制定一种多尺度层析重建技术,其中可以在多个尺度或分辨率下重建物体。通过组合不同尺度的重建,可以获得完整的重建。作者的多尺度重建技术与 FBP 重建方法具有相同的计算复杂度。它与其他多尺度重建技术的不同之处在于:(1)物体通过投影域的一维多尺度变换来定义;(2)作者通过基于多尺度对象系数的所选分形先验计算最大后验概率(MAP)多尺度重建估计,从而明确考虑到投影数据中的噪声。这种最大后验概率(MAP)解的计算复杂度也与 FBP 重建相同。这一结果与常用的统计正则化方法形成对比,后者导致计算密集型的优化算法。