Suppr超能文献

基于平行子梯度投影外推迭代的凸集论图像恢复。

Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections.

机构信息

Dept. of Electr. Eng., City Univ. of New York, NY.

出版信息

IEEE Trans Image Process. 1997;6(4):493-506. doi: 10.1109/83.563316.

Abstract

Solving a convex set theoretic image recovery problem amounts to finding a point in the intersection of closed and convex sets in a Hilbert space. The projection onto convex sets (POCS) algorithm, in which an initial estimate is sequentially projected onto the individual sets according to a periodic schedule, has been the most prevalent tool to solve such problems. Nonetheless, POCS has several shortcomings: it converges slowly, it is ill suited for implementation on parallel processors, and it requires the computation of exact projections at each iteration. We propose a general parallel projection method (EMOPSP) that overcomes these shortcomings. At each iteration of EMOPSP, a convex combination of subgradient projections onto some of the sets is formed and the update is obtained via relaxation. The relaxation parameter may vary over an iteration-dependent, extrapolated range that extends beyond the interval [0,2] used in conventional projection methods. EMOPSP not only generalizes existing projection-based schemes, but it also converges very efficiently thanks to its extrapolated relaxations. Theoretical convergence results are presented as well as numerical simulations.

摘要

解决凸集理论图像恢复问题相当于在 Hilbert 空间中找到闭凸集的交点中的一个点。投影到凸集(POCS)算法,其中根据周期性计划将初始估计值依次投影到各个集合上,是解决此类问题最流行的工具。然而,POCS 有几个缺点:它收敛速度慢,不适合在并行处理器上实现,并且需要在每次迭代中计算精确的投影。我们提出了一种通用的并行投影方法(EMOPSP),克服了这些缺点。在 EMOPSP 的每次迭代中,形成一些集合的子梯度投影的凸组合,并通过松弛获得更新。松弛参数可以在依赖于迭代的外推范围内变化,该范围超出了传统投影方法中使用的[0,2]区间。EMOPSP 不仅推广了现有的基于投影的方案,而且由于其外推松弛,它的收敛速度也非常快。还提出了理论收敛结果和数值模拟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验