Butnariu Dan, Censor Yair, Gurfil Pini, Hadar Ethan
Department of Mathematics, University of Haifa Mt. Carmel, Haifa 31905, Israel (
SIAM J Optim. 2008 Jul 3;19(2):786-807. doi: 10.1137/070689127.
We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy leaves enough user-flexibility but gives a mathematical guarantee for the algorithm's behavior in the inconsistent case. We present numerical results of computational experiments that illustrate the computational advantage of the new method.
我们研究了一些次梯度投影方法,用于在不一致情况下求解具有一般(不一定是超平面或半空间)凸集的凸可行性问题,并提出了一种以特定自适应方式控制松弛参数的策略。该策略为用户留出了足够的灵活性,但为算法在不一致情况下的行为提供了数学保证。我们给出了计算实验的数值结果,这些结果说明了新方法的计算优势。