Dept. of Electr. and Comput. Eng., Arizona Univ., Tucson, AZ.
IEEE Trans Image Process. 1997;6(5):724-35. doi: 10.1109/83.568929.
We show that a biorthogonal spline wavelet closely approximates the prewhitening matched filter for detecting Gaussian objects in Markov noise. The filterbank implementation of the wavelet transform acts as a hierarchy of such detectors operating at discrete object scales. If the object to be detected is Gaussian and its scale happens to coincide with one of those computed by the wavelet transform, and if the background noise is truly Markov, then optimum detection is realized by thresholding the appropriate subband image. In reality, the Gaussian may be a rather coarse approximation of the object, and the background noise may deviate from the Markov assumption. In this case, we may view the wavelet decomposition as a means for computing an orthogonal feature set for input to a classifier. We use a supervised linear classifier applied to feature vectors comprised of samples taken from the subbands of an N-octave, undecimated wavelet transform. The resulting map of test statistic values indicates the presence and location of objects. The object itself is reconstructed by using the test statistic to emphasize wavelet subbands, followed by computing the inverse wavelet transform. We show two contrasting applications of the wavelets-based object recovery algorithm. For detecting microcalcifications in digitized mammograms, the object and noise models closely match the real image data, and the multiscale matched filter paradigm is highly appropriate. The second application, extracting ship outlines in noisy forward-looking infrared images, is presented as a case where good results are achieved despite the data models being less well matched to the assumptions of the algorithm.
我们表明,双正交样条小波函数非常近似于预白化匹配滤波器,可用于检测马尔可夫噪声中的高斯目标。小波变换的滤波器组实现充当了在离散目标尺度上操作的此类检测器的层次结构。如果要检测的目标是高斯的,并且其大小恰好与小波变换计算出的大小之一相吻合,如果背景噪声确实是马尔可夫的,则通过对适当的子带图像进行阈值处理即可实现最佳检测。实际上,高斯可能是对物体的相当粗略的近似,而背景噪声可能偏离马尔可夫假设。在这种情况下,我们可以将小波分解视为计算用于分类器输入的正交特征集的一种方法。我们使用应用于由从 N 倍频程、非抽取小波变换的子带中获取的样本组成的特征向量的有监督线性分类器。测试统计值的映射表明了对象的存在和位置。通过使用测试统计值来强调小波子带并计算逆小波变换,从而重建对象。我们展示了基于小波的对象恢复算法的两个对比应用。在数字化乳房 X 光片中检测微钙化,对象和噪声模型非常接近实际图像数据,因此多尺度匹配滤波器范式非常适用。第二个应用是在嘈杂的前视红外图像中提取船的轮廓,尽管数据模型与算法的假设不太匹配,但仍取得了良好的结果。