Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran.
Front Neural Circuits. 2019 Apr 2;13:20. doi: 10.3389/fncir.2019.00020. eCollection 2019.
Wavelet transform has been widely used in image and signal processing applications such as denoising and compression. In this study, we explore the relation of the wavelet representation of stimuli with MEG signals acquired from a human object recognition experiment. To investigate the signature of wavelet descriptors in the visual system, we apply five levels of multi-resolution wavelet decomposition to the stimuli presented to participants during MEG recording and extract the approximation and detail sub-bands (horizontal, vertical, diagonal) coefficients in each level of decomposition. Apart from, employing multivariate pattern analysis (MVPA), a linear support vector classifier (SVM) is trained and tested over the time on MEG pattern vectors to decode neural information. Then, we calculate the representational dissimilarity matrix (RDM) on each time point of the MEG data and also on wavelet descriptors using classifier accuracy and one minus Pearson correlation coefficient, respectively. Given the time-courses calculated from performing the Pearson correlation between the wavelet descriptors RDMs and MEG decoding accuracy in each time point, our result shows that the peak latency of the wavelet approximation time courses occurs later for higher level coefficients. Furthermore, studying the neural trace of detail sub-bands indicates that the overall number of statistically significant time points for the horizontal and vertical detail coefficients is noticeably higher than diagonal detail coefficients, confirming the evidence of the oblique effect that the horizontal and vertical lines are more decodable in the human brain.
小波变换在图像处理和信号处理等领域得到了广泛应用,如去噪和压缩。在本研究中,我们探索了刺激的小波表示与从人类对象识别实验中获取的 MEG 信号之间的关系。为了研究小波描述符在视觉系统中的特征,我们将多分辨率小波分解应用于 MEG 记录期间向参与者呈现的刺激,并提取每个分解级别中的逼近和细节子带(水平、垂直、对角)系数。此外,采用多元模式分析 (MVPA),在 MEG 模式向量上对线性支持向量分类器 (SVM) 进行训练和测试,以解码神经信息。然后,我们分别使用分类器精度和 Pearson 相关系数计算每个 MEG 数据时间点和小波描述符上的表示相似性矩阵 (RDM)。给定从执行每个时间点的小波描述符 RDM 和 MEG 解码精度之间的 Pearson 相关性计算得出的时间过程,我们的结果表明,较高水平系数的小波逼近时间过程的峰值潜伏期较晚。此外,研究细节子带的神经轨迹表明,水平和垂直细节系数具有统计学意义的时间点的总数明显高于对角细节系数,这证实了大脑中水平和垂直线更可解码的斜向效应的证据。