Weiss-Schneeweiss Hanna, Tremetsberger Karin, Schneeweiss Gerald M, Parker John S, Stuessy Tod F
Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria.
Ann Bot. 2008 May;101(7):909-18. doi: 10.1093/aob/mcn023. Epub 2008 Feb 19.
Changes in chromosome structure and number play an important role in plant evolution. A system well-suited to studying different modes of chromosome evolution is the genus Hypochaeris (Asteraceae) with its centre of species' diversity in South America. All South American species uniformly have a chromosome base number of x = 4 combined with variation in rDNA number and distribution, and a high frequency of polyploidy. The aim of this paper is to assess directions and mechanisms of karyotype evolution in South American species by interpreting both newly obtained and previous data concerning rDNA localization in a phylogenetic context.
Eleven Hypochaeris species from 18 populations were studied using fluorescence in situ hybridization (FISH) with 35S and 5S rDNA probes. A phylogenetic framework was established from neighbour-net analysis of amplified fragment length polymorphism (AFLP) fingerprint data.
A single 5S rDNA locus is invariably found on the short arm of chromosome 2. Using 35S rDNA loci, based on number (one or two) and localization (interstitial on the long arm of chromosome 2, but sometimes lacking, and terminal or interstitial on the short arm of chromosome 3, only very rarely lacking), seven karyotype groups can be distinguished; five of these include polyploids. Karyotype groups with more than one species do not form monophyletic groups.
Early evolution of Hypochaeris in South America was characterized by considerable karyotype differentiation resulting from independent derivations from an ancestral karyotype. There was marked diversification with respect to the position and evolution of the 35S rDNA locus on chromosome 3, probably involving inversions and/or transpositions, and on chromosome 2 (rarely 3) concerning inactivation and loss. Among these different karyotype assemblages, the apargioides group and its derivatives constitute by far the majority of species.
染色体结构和数量的变化在植物进化中起着重要作用。一个非常适合研究不同染色体进化模式的系统是猫儿菊属(菊科),其物种多样性中心在南美洲。所有南美洲物种的染色体基数均为x = 4,同时核糖体DNA(rDNA)的数量和分布存在变异,并且多倍体频率很高。本文的目的是通过在系统发育背景下解释新获得的以及先前有关rDNA定位的数据,来评估南美洲物种核型进化的方向和机制。
使用35S和5S rDNA探针,通过荧光原位杂交(FISH)对来自18个种群的11种猫儿菊属植物进行了研究。基于扩增片段长度多态性(AFLP)指纹数据的邻接网络分析建立了系统发育框架。
在第2号染色体的短臂上总是能发现一个单一的5S rDNA位点。根据35S rDNA位点的数量(一个或两个)和定位(位于第2号染色体长臂的中间,但有时缺失,以及位于第3号染色体短臂的末端或中间,非常罕见缺失),可以区分出七个核型组;其中五个包括多倍体。包含多个物种的核型组并不形成单系类群。
南美洲猫儿菊属植物的早期进化特征是由祖先核型的独立衍生导致的显著核型分化。在第3号染色体以及第2号染色体(很少在第3号染色体)上,35S rDNA位点的位置和进化方面存在明显的多样化,可能涉及倒位和/或转座,以及失活和缺失。在这些不同的核型组合中,类拟猫儿菊组及其衍生物构成了迄今为止的大多数物种。