Sadreyev Ruslan I, Grishin Nick V
Howard Hughes Medical Institute, Dallas, TX 75390-9050, USA.
Nucleic Acids Res. 2008 Apr;36(7):2240-8. doi: 10.1093/nar/gkn065. Epub 2008 Feb 19.
Comparison of multiple protein sequence alignments (MSA) reveals unexpected evolutionary relations between protein families and leads to exciting predictions of spatial structure and function. The power of MSA comparison critically depends on the quality of statistical model used to rank the similarities found in a database search, so that biologically relevant relationships are discriminated from spurious connections. Here, we develop an accurate statistical description of MSA comparison that does not originate from conventional models of single sequence comparison and captures essential features of protein families. As a final result, we compute E-values for the similarity between any two MSA using a mathematical function that depends on MSA lengths and sequence diversity. To develop these estimates of statistical significance, we first establish a procedure for generating realistic alignment decoys that reproduce natural patterns of sequence conservation dictated by protein secondary structure. Second, since similarity scores between these alignments do not follow the classic Gumbel extreme value distribution, we propose a novel distribution that yields statistically perfect agreement with the data. Third, we apply this random model to database searches and show that it surpasses conventional models in the accuracy of detecting remote protein similarities.
多个蛋白质序列比对(MSA)的比较揭示了蛋白质家族之间意想不到的进化关系,并带来了关于空间结构和功能的令人兴奋的预测。MSA比较的能力关键取决于用于对数据库搜索中发现的相似性进行排名的统计模型的质量,以便将生物学上相关的关系与虚假联系区分开来。在这里,我们开发了一种准确的MSA比较统计描述,它并非源自单序列比较的传统模型,而是捕捉了蛋白质家族的基本特征。最终,我们使用一个依赖于MSA长度和序列多样性的数学函数来计算任意两个MSA之间相似性的E值。为了得出这些统计显著性估计值,我们首先建立了一个生成逼真比对诱饵的程序,这些诱饵能够重现由蛋白质二级结构决定的自然序列保守模式。其次,由于这些比对之间的相似性得分不遵循经典的耿贝尔极值分布,我们提出了一种新的分布,它与数据在统计上完全吻合。第三,我们将这个随机模型应用于数据库搜索,并表明它在检测远程蛋白质相似性的准确性方面超过了传统模型。