Suppr超能文献

平均场理论在图像运动估计中的应用。

The application of mean field theory to image motion estimation.

机构信息

Dept. of Electr. Eng. and Comput. Sci., Wisconsin Univ., Milwaukee, WI.

出版信息

IEEE Trans Image Process. 1995;4(1):19-33. doi: 10.1109/83.350816.

Abstract

Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

摘要

先前,基于马尔可夫随机场 (MRF) 模型的技术已被提出用于图像运动估计。由于运动估计通常是一个不适定问题,因此需要各种约束条件来获得唯一且稳定的解。MRF 方法的主要优点是能够纳入此类约束条件,例如,物体内部的运动连续性和物体之间边界处的运动不连续性。在 MRF 方法中,运动估计通常被表述为一个优化问题,而两种常用的优化方法是模拟退火 (SA) 和迭代条件模式 (ICM)。尽管从找到全局最优的角度来看,SA 在理论上是最优的,但它通常需要多次迭代才能收敛。另一方面,ICM 收敛速度很快,但由于其“硬决策”性质,结果往往不尽如人意。先前,作者已经将平均场理论应用于图像分割和图像恢复问题。它提供的结果几乎与 SA 一样好,但收敛速度要快得多。本文展示了如何将平均场理论应用于基于 MRF 模型的运动估计。该方法在合成和真实图像上进行了演示,结果表明其能够产生良好的运动估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验