Suppr超能文献

多尺度随机场模型在贝叶斯图像分割中的应用。

A multiscale random field model for Bayesian image segmentation.

机构信息

Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN.

出版信息

IEEE Trans Image Process. 1994;3(2):162-77. doi: 10.1109/83.277898.

Abstract

Many approaches to Bayesian image segmentation have used maximum a posteriori (MAP) estimation in conjunction with Markov random fields (MRF). Although this approach performs well, it has a number of disadvantages. In particular, exact MAP estimates cannot be computed, approximate MAP estimates are computationally expensive to compute, and unsupervised parameter estimation of the MRF is difficult. The authors propose a new approach to Bayesian image segmentation that directly addresses these problems. The new method replaces the MRF model with a novel multiscale random field (MSRF) and replaces the MAP estimator with a sequential MAP (SMAP) estimator derived from a novel estimation criteria. Together, the proposed estimator and model result in a segmentation algorithm that is not iterative and can be computed in time proportional to MN where M is the number of classes and N is the number of pixels. The also develop a computationally efficient method for unsupervised estimation of model parameters. Simulations on synthetic images indicate that the new algorithm performs better and requires much less computation than MAP estimation using simulated annealing. The algorithm is also found to improve classification accuracy when applied to the segmentation of multispectral remotely sensed images with ground truth data.

摘要

许多贝叶斯图像分割方法都使用最大后验(MAP)估计和马尔可夫随机场(MRF)相结合。尽管这种方法表现良好,但它有许多缺点。特别是,无法计算精确的 MAP 估计,计算近似 MAP 估计的计算成本很高,并且难以对 MRF 进行无监督的参数估计。作者提出了一种新的贝叶斯图像分割方法,直接解决了这些问题。新方法用新颖的多尺度随机场(MSRF)代替 MRF 模型,并用从新的估计标准得出的顺序 MAP(SMAP)估计器代替 MAP 估计器。所提出的估计器和模型共同导致一种不是迭代的分割算法,并且可以在与 MN 成正比的时间内计算,其中 M 是类的数量,N 是像素的数量。他们还开发了一种用于模型参数无监督估计的计算高效方法。对合成图像的模拟表明,新算法的性能优于使用模拟退火的 MAP 估计,并且需要的计算量要少得多。当应用于具有地面真实数据的多光谱遥感图像的分割时,该算法还被发现可以提高分类精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验