Suppr超能文献

通过热力学循环预测固有水溶解度。

Predicting intrinsic aqueous solubility by a thermodynamic cycle.

作者信息

Palmer David S, Llinàs Antonio, Morao Iñaki, Day Graeme M, Goodman Jonathan M, Glen Robert C, Mitchell John B O

机构信息

The Pfizer Institute for Pharmaceutical Materials Science and Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.

出版信息

Mol Pharm. 2008 Mar-Apr;5(2):266-79. doi: 10.1021/mp7000878. Epub 2008 Feb 22.

Abstract

We report methods to predict the intrinsic aqueous solubility of crystalline organic molecules from two different thermodynamic cycles. We find that direct computation of solubility, via ab initio calculation of thermodynamic quantities at an affordable level of theory, cannot deliver the required accuracy. Therefore, we have turned to a mixture of direct computation and informatics, using the calculated thermodynamic properties, along with a few other key descriptors, in regression models. The prediction of log intrinsic solubility (referred to mol/L) by a three-variable linear regression equation gave r(2)=0.77 and RMSE=0.71 for an external test set comprising drug molecules. The model includes a calculated crystal lattice energy which provides a computational method to account for the interactions in the solid state. We suggest that it is not necessary to know the polymorphic form prior to prediction. Furthermore, the method developed here may be applicable to other solid-state systems such as salts or cocrystals.

摘要

我们报告了从两个不同的热力学循环预测结晶有机分子固有水溶性的方法。我们发现,通过在可承受的理论水平上从头计算热力学量来直接计算溶解度,无法达到所需的精度。因此,我们转向了直接计算和信息学的混合方法,在回归模型中使用计算出的热力学性质以及其他一些关键描述符。对于包含药物分子的外部测试集,由三变量线性回归方程预测的固有溶解度对数(以mol/L为单位)给出r(2)=0.77且RMSE=0.71。该模型包括计算出的晶格能量,它提供了一种计算方法来考虑固态中的相互作用。我们建议在预测之前不必知道多晶型形式。此外,这里开发的方法可能适用于其他固态系统,如盐或共晶体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验