文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent Advances of DprE1 Inhibitors against : Computational Analysis of Physicochemical and ADMET Properties.

作者信息

Amado Patrícia S M, Woodley Christopher, Cristiano Maria L S, O'Neill Paul M

机构信息

Center of Marine Sciences - CCMAR, University of Algarve, P-8005-039 Faro, Portugal.

Department of Chemistry and Pharmacy, FCT, University of Algarve, P-8005-039 Faro, Portugal.

出版信息

ACS Omega. 2022 Nov 3;7(45):40659-40681. doi: 10.1021/acsomega.2c05307. eCollection 2022 Nov 15.


DOI:10.1021/acsomega.2c05307
PMID:36406587
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9670723/
Abstract

Decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) is a critical flavoenzyme in , catalyzing a vital step in the production of lipoarabinomannan and arabinogalactan, both of which are essential for cell wall biosynthesis. Due to its periplasmic localization, DprE1 is a susceptible target, and several compounds with diverse scaffolds have been discovered that inhibit this enzyme, covalently or noncovalently. We evaluated a total of ∼1519 DprE1 inhibitors disclosed in the literature from 2009 to April 2022 by performing an in-depth analysis of physicochemical descriptors and absorption, distribution, metabolism, excretion, and toxicity (ADMET), to gain new insights into these properties in DprE1 inhibitors. Several molecular properties that should facilitate the design and optimization of future DprE1 inhibitors are described, allowing for the development of improved analogues targeting .

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/43de6e8195f5/ao2c05307_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/0e7f5b4390a1/ao2c05307_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/dc9bba7628f3/ao2c05307_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/678ed6d40ea8/ao2c05307_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/785c69a11962/ao2c05307_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/d9da43c0fd28/ao2c05307_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/150f2603b652/ao2c05307_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/842ea2e57334/ao2c05307_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/6aaaba9c145f/ao2c05307_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/12dbb37e5238/ao2c05307_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/43de6e8195f5/ao2c05307_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/0e7f5b4390a1/ao2c05307_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/dc9bba7628f3/ao2c05307_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/678ed6d40ea8/ao2c05307_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/785c69a11962/ao2c05307_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/d9da43c0fd28/ao2c05307_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/150f2603b652/ao2c05307_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/842ea2e57334/ao2c05307_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/6aaaba9c145f/ao2c05307_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/12dbb37e5238/ao2c05307_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/9670723/43de6e8195f5/ao2c05307_0010.jpg

相似文献

[1]
Recent Advances of DprE1 Inhibitors against : Computational Analysis of Physicochemical and ADMET Properties.

ACS Omega. 2022-11-3

[2]
Recent advances in the development of DprE1 inhibitors using AI/CADD approaches.

Drug Discov Today. 2024-6

[3]
Chemical Space Exploration of DprE1 Inhibitors Using Chemoinformatics and Artificial Intelligence.

ACS Omega. 2021-5-25

[4]
Virtual Screening of Small Molecular Inhibitors against DprE1.

Molecules. 2018-2-27

[5]
Structure-activity relationship mediated molecular insights of DprE1 inhibitors: A Comprehensive Review.

J Biomol Struct Dyn. 2024-8

[6]
Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis.

J Med Chem. 2018-6-12

[7]
Decaprenylphosphoryl-β-D-ribose 2'-epimerase, the target of benzothiazinones and dinitrobenzamides, is an essential enzyme in Mycobacterium smegmatis.

PLoS One. 2011-2-8

[8]
Optimization of Hydantoins as Potent Antimycobacterial Decaprenylphosphoryl-β-d-Ribose Oxidase (DprE1) Inhibitors.

J Med Chem. 2020-5-13

[9]
Structure based pharmacophore modelling approach for the design of azaindole derivatives as DprE1 inhibitors for tuberculosis.

J Mol Graph Model. 2020-12

[10]
Computer-assisted discovery of safe and effective DprE1/ aaRSs Inhibitors against TB utilizing Drug Repurposing approach.

J Infect Public Health. 2023-4

引用本文的文献

[1]
Disrupting tuberculosis pathogenesis by targeting DprE1 in cell wall biosynthesis: a structural dynamics perspective.

J Comput Aided Mol Des. 2025-7-9

[2]
Review of Recent Advances in Thiazolidin-4-One Derivatives as Promising Antitubercular Agents (2021-Present).

Molecules. 2025-5-17

[3]
Preclinical Evaluation of Selene-Ethylenelacticamides in Tuberculosis: Effects Against Active, Dormant, and Resistant and In Vitro Toxicity Investigation.

Microorganisms. 2025-2-11

[4]
Computational approaches: atom-based 3D-QSAR, molecular docking, ADME-Tox, MD simulation and DFT to find novel multi-targeted anti-tubercular agents.

BMC Chem. 2025-2-13

[5]
L mitigates bisphenol A-induced ovarian dysfunction and inflammation in Wistar rats: biochemical, histopathological, pharmacokinetic, and in silico studies.

3 Biotech. 2025-1

[6]
A Comparative Pharmacokinetics Study of Orally and Intranasally Administered 8-Nitro-1,3-benzothiazin-4-one (BTZ043) Amorphous Drug Nanoparticles.

ACS Pharmacol Transl Sci. 2024-11-9

[7]
The progress of drug targets.

Front Med (Lausanne). 2024-10-21

[8]
3,5-disubstituted pyridines with potent activity against drug-resistant clinical isolates.

Future Med Chem. 2024

[9]
A Review of Antibacterial Candidates with New Modes of Action.

ACS Infect Dis. 2024-10-11

[10]
Synthesis, Activity, Toxicity, and In Silico Studies of New Antimycobacterial -Alkyl Nitrobenzamides.

Pharmaceuticals (Basel). 2024-5-9

本文引用的文献

[1]
Identification of a new series of benzothiazinone derivatives with excellent antitubercular activity and improved pharmacokinetic profiles.

RSC Adv. 2018-3-21

[2]
Development of Predictive Classification Models for Whole Cell Antimycobacterial Activity of Benzothiazinones.

J Med Chem. 2022-5-12

[3]
Identification of benzothiazones containing a hexahydropyrrolo[3,4-]pyrrol moiety as antitubercular agents against MDR-MTB.

RSC Adv. 2020-4-7

[4]
Development of 6-Methanesulfonyl-8-nitrobenzothiazinone Based Antitubercular Agents.

ACS Med Chem Lett. 2022-3-10

[5]
Identification of thiophene-benzenesulfonamide derivatives for the treatment of multidrug-resistant tuberculosis.

Eur J Med Chem. 2022-3-5

[6]
The Veterinary Anti-Parasitic Selamectin Is a Novel Inhibitor of the DprE1 Enzyme.

Int J Mol Sci. 2022-1-11

[7]
Efficient Synthesis of Benzothiazinone Analogues with Activity against Intracellular Mycobacterium tuberculosis.

ChemMedChem. 2022-3-18

[8]
Exploring disordered loops in DprE1 provides a functional site to combat drug-resistance in Mycobacterium strains.

Eur J Med Chem. 2022-1-5

[9]
Discovery of novel DprE1 inhibitors via computational bioactivity fingerprints and structure-based virtual screening.

Acta Pharmacol Sin. 2022-6

[10]
Structural and Activity Relationships of 6-Sulfonyl-8-Nitrobenzothiazinones as Antitubercular Agents.

J Med Chem. 2021-10-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索