Suppr超能文献

有机半导体中的场效应调制塞贝克系数

Field-effect-modulated Seebeck coefficient in organic semiconductors.

作者信息

Pernstich K P, Rössner B, Batlogg B

机构信息

Laboratory for Solid State Physics, ETH Zurich, CH-8093 Zurich, Switzerland.

出版信息

Nat Mater. 2008 Apr;7(4):321-5. doi: 10.1038/nmat2120. Epub 2008 Feb 24.

Abstract

Central to the operation of organic electronic and optoelectronic devices is the transport of charge and energy in the organic semiconductor, and to understand the nature and dynamics of charge carriers is at the focus of intense research efforts. As a basic transport property of solids, the Seebeck coefficient S provides deep insight as it is given by the entropy transported by thermally excited charge carriers and involves in the simplest case only electronic contributions where the transported entropy is determined by details of the band structure and scattering events. We have succeeded for the first time to measure the temperature- and carrier-density-dependent thermopower in single crystals and thin films of two prototypical organic semiconductors by a controlled modulation of the chemical potential in a field-effect geometry. Surprisingly, we find the Seebeck coefficient to be well within the range of the electronic contribution in conventional inorganic semiconductors, highlighting the similarity of transport mechanisms in organic and inorganic semiconductors. Charge and entropy transport is best described as band-like transport of quasiparticles that are subjected to scattering, with exponentially distributed in-gap trap states, and without further contributions to S.

摘要

有机电子和光电器件运行的核心是有机半导体中的电荷和能量传输,而理解电荷载流子的性质和动力学是密集研究工作的重点。作为固体的一种基本传输性质,塞贝克系数S能提供深刻见解,因为它由热激发电荷载流子传输的熵给出,并且在最简单的情况下仅涉及电子贡献,其中传输的熵由能带结构和散射事件的细节决定。我们首次通过在场效应几何结构中对化学势进行可控调制,成功测量了两种典型有机半导体单晶和薄膜中与温度和载流子密度相关的热功率。令人惊讶的是,我们发现塞贝克系数完全在传统无机半导体电子贡献的范围内,突出了有机和无机半导体中传输机制的相似性。电荷和熵传输最好描述为准粒子的带状传输,这些准粒子会受到散射,具有指数分布的带隙陷阱态,并且对S没有进一步贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验