Boyle Connor J, Upadhyaya Meenakshi, Wang Peijian, Renna Lawrence A, Lu-Díaz Michael, Pyo Jeong Seung, Hight-Huf Nicholas, Korugic-Karasz Ljiljana, Barnes Michael D, Aksamija Zlatan, Venkataraman D
Department of Chemistry, University of Massachusetts Amherst, 690 N. Pleasant Street, Amherst, MA, 01003, USA.
Department of Electrical and Computer Engineering, University of Massachusetts Amherst, 100 Natural Resources Road, Amherst, MA, 01003, USA.
Nat Commun. 2019 Jul 3;10(1):2827. doi: 10.1038/s41467-019-10567-5.
A significant challenge in the rational design of organic thermoelectric materials is to realize simultaneously high electrical conductivity and high induced-voltage in response to a thermal gradient, which is represented by the Seebeck coefficient. Conventional wisdom posits that the polymer alone dictates thermoelectric efficiency. Herein, we show that doping - in particular, clustering of dopants within conjugated polymer films - has a profound and predictable influence on their thermoelectric properties. We correlate Seebeck coefficient and electrical conductivity of iodine-doped poly(3-hexylthiophene) and poly[2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-3,6-diyl)-alt-(2,2';5',2'';5'',2'''-quaterthiophen-5,5'''-diyl)] films with Kelvin probe force microscopy to highlight the role of the spatial distribution of dopants in determining overall charge transport. We fit the experimental data to a phonon-assisted hopping model and found that the distribution of dopants alters the distribution of the density of states and the Kang-Snyder transport parameter. These results highlight the importance of controlling dopant distribution within conjugated polymer films for thermoelectric and other electronic applications.
在有机热电材料的合理设计中,一个重大挑战是要同时实现高电导率和对热梯度产生高感应电压(由塞贝克系数表示)。传统观点认为,仅聚合物就能决定热电效率。在此,我们表明,掺杂——尤其是共轭聚合物薄膜中掺杂剂的聚集——对其热电性能有着深远且可预测的影响。我们将碘掺杂的聚(3 - 己基噻吩)和聚[2,5 - 双(2 - 辛基十二烷基)吡咯并[3,4 - c]吡咯 - 1,4(2H,5H) - 二酮 - 3,6 - 二基]-alt-(2,2';5',2'';5'',2'''-四噻吩 - 5,5'''-二基)]薄膜的塞贝克系数和电导率与开尔文探针力显微镜相关联,以突出掺杂剂空间分布在决定整体电荷传输中的作用。我们将实验数据拟合到一个声子辅助跳跃模型,发现掺杂剂的分布改变了态密度分布和康 - 斯奈德传输参数。这些结果突出了控制共轭聚合物薄膜内掺杂剂分布对于热电及其他电子应用的重要性。