Suppr超能文献

屏-片乳腺摄影与软拷贝阅读的全视野数字化乳腺摄影中的观察者变异性。

Observer variability in screen-film mammography versus full-field digital mammography with soft-copy reading.

作者信息

Skaane Per, Diekmann Felix, Balleyguier Corinne, Diekmann Susanne, Piguet Jean-Charles, Young Kari, Abdelnoor Michael, Niklason Loren

机构信息

Department of Radiology, Breast Imaging Center, Ullevaal University Hospital, Kirkeveien 166, 0407 Oslo, Norway.

出版信息

Eur Radiol. 2008 Jun;18(6):1134-43. doi: 10.1007/s00330-008-0878-0. Epub 2008 Feb 27.

Abstract

Full-field digital mammography (FFDM) with soft-copy reading is more complex than screen-film mammography (SFM) with hard-copy reading. The aim of this study was to compare inter- and intraobserver variability in SFM versus FFDM of paired mammograms from a breast cancer screening program. Six radiologists interpreted mammograms of 232 cases obtained with both techniques, including 46 cancers, 88 benign lesions, and 98 normals. Image interpretation included BI-RADS categories. A case consisted of standard two-view mammograms of one breast. Images were scored in two sessions separated by 5 weeks. Observer variability was substantial for SFM as well as for FFDM, but overall there was no significant difference between the observer variability at SFM and FFDM. Mean kappa values were lower, indicating less agreement, for microcalcifications compared with masses. The lower observer agreement for microcalcifications, and especially the low intraobserver concordance between the two imaging techniques for three readers, was noticeable. The level of observer agreement might be an indicator of radiologist performance and could confound studies designed to separate diagnostic differences between the two imaging techniques. The results of our study confirm the need for proper training for radiologists starting FFDM with soft-copy reading in breast cancer screening.

摘要

采用软拷贝阅读的全视野数字乳腺摄影(FFDM)比采用硬拷贝阅读的屏-片乳腺摄影(SFM)更为复杂。本研究的目的是比较在一项乳腺癌筛查项目中,SFM与FFDM对配对乳腺钼靶片的观察者间和观察者内变异性。六位放射科医生解读了用这两种技术获取的232例病例的乳腺钼靶片,其中包括46例癌症、88例良性病变和98例正常病例。图像解读包括乳腺影像报告和数据系统(BI-RADS)分类。一个病例包括一侧乳房的标准双视图乳腺钼靶片。图像在相隔5周的两个时间段进行评分。SFM以及FFDM的观察者变异性都很大,但总体而言,SFM和FFDM的观察者变异性之间没有显著差异。与肿块相比,微钙化的平均kappa值较低,表明一致性较差。微钙化的观察者一致性较低,尤其是三位读者在两种成像技术之间的观察者内一致性较低,这一点很明显。观察者一致性水平可能是放射科医生表现的一个指标,并且可能混淆旨在区分两种成像技术之间诊断差异的研究。我们的研究结果证实,对于开始采用软拷贝阅读进行FFDM的乳腺癌筛查放射科医生,需要进行适当培训。

相似文献

1
Observer variability in screen-film mammography versus full-field digital mammography with soft-copy reading.
Eur Radiol. 2008 Jun;18(6):1134-43. doi: 10.1007/s00330-008-0878-0. Epub 2008 Feb 27.
4
9
Comparison of soft-copy and hard-copy reading for full-field digital mammography.
Radiology. 2009 Apr;251(1):41-9. doi: 10.1148/radiol.2511071462.

引用本文的文献

1
Can Radiologists Predict the Presence of Ductal Carcinoma In Situ and Invasive Breast Cancer?
AJR Am J Roentgenol. 2017 Apr;208(4):933-939. doi: 10.2214/AJR.16.16073. Epub 2017 Feb 15.
2
Investigating the link between radiologists' gaze, diagnostic decision, and image content.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1067-75. doi: 10.1136/amiajnl-2012-001503. Epub 2013 Jun 20.
4
Comparative evaluation of digital mammography and film mammography: systematic review and meta-analysis.
Sao Paulo Med J. 2011;129(4):250-60. doi: 10.1590/s1516-31802011000400009.
5
Predictors of interobserver agreement in breast imaging using the Breast Imaging Reporting and Data System.
Breast Cancer Res Treat. 2010 Apr;120(3):539-46. doi: 10.1007/s10549-010-0770-x. Epub 2010 Feb 21.

本文引用的文献

4
Digital mammography: what do we and what don't we know?
Eur Radiol. 2007 Aug;17(8):1931-42. doi: 10.1007/s00330-007-0586-1. Epub 2007 Feb 14.
7
BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value.
Radiology. 2006 May;239(2):385-91. doi: 10.1148/radiol.2392042127. Epub 2006 Mar 28.
9
Diagnostic performance of digital versus film mammography for breast-cancer screening.
N Engl J Med. 2005 Oct 27;353(17):1773-83. doi: 10.1056/NEJMoa052911. Epub 2005 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验