Suppr超能文献

放射科医生能预测导管原位癌和浸润性乳腺癌的存在吗?

Can Radiologists Predict the Presence of Ductal Carcinoma In Situ and Invasive Breast Cancer?

作者信息

Aminololama-Shakeri Shadi, Flowers Chris I, McLaren Christine E, Wisner Dorota J, de Guzman Jade, Campbell Joan E, Bassett Lawrence W, Ojeda-Fournier Haydee, Gerlach Karen, Hargreaves Jonathan, Elson Sarah L, Retallack Hanna, Joe Bonnie N, Feig Stephen A, Wells Colin J

机构信息

1 Department of Radiology, University of California Davis, 4860 Y St, Ste 3100, Sacramento, CA 95817.

2 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA.

出版信息

AJR Am J Roentgenol. 2017 Apr;208(4):933-939. doi: 10.2214/AJR.16.16073. Epub 2017 Feb 15.

Abstract

OBJECTIVE

We hypothesize that radiologists' estimated percentage likelihood assessments for the presence of ductal carcinoma in situ (DCIS) and invasive cancer may predict histologic outcomes.

MATERIALS AND METHODS

Two hundred fifty cases categorized as BI-RADS category 4 or 5 at four University of California Medical Centers were retrospectively reviewed by 10 academic radiologists with a range of 1-39 years in practice. Readers assigned BI-RADS category (1, 2, 3, 4a, 4b, 4c, or 5), estimated percentage likelihood of DCIS or invasive cancer (0-100%), and confidence rating (1 = low, 5 = high) after reviewing screening and diagnostic mammograms and ultrasound images. ROC curves were generated.

RESULTS

Sixty-two percent (156/250) of lesions were benign and 38% (94/250) were malignant. There were 26 (10%) DCIS, 20 (8%) invasive cancers, and 48 (19%) cases of DCIS and invasive cancer. AUC values were 0.830-0.907 for invasive cancer and 0.731-0.837 for DCIS alone. Sensitivity of 82% (56/68), specificity of 84% (153/182), positive predictive value (PPV) of 66% (56/85), negative predictive value (NPV) of 93% (153/165), and accuracy of 84% ([56 + 153]/250) were calculated using an estimated percentage likelihood of 20% or higher as the prediction threshold for invasive cancer for the radiologist with the highest AUC (0.907; 95% CI, 0.864-0.951). Every 20% increase in the estimated percentage likelihood of invasive cancer increased the odds of invasive cancer by approximately two times (odds ratio, 2.4). For DCIS, using a threshold of 40% or higher, sensitivity of 81% (21/26), specificity of 79% (178/224), PPV of 31% (21/67), NPV of 97% (178/183), and accuracy of 80% ([21 + 178]/250) were calculated. Similarly, these values were calculated at thresholds of 2% or higher (BI-RADS category 4) and 95% or higher (BI-RADS category 5) to predict the presence of malignancy.

CONCLUSION

Using likelihood estimates, radiologists may predict the presence of invasive cancer with fairly high accuracy. Radiologist-assigned estimated percentage likelihood can predict the presence of DCIS, albeit with lower accuracy than that for invasive cancer.

摘要

目的

我们假设放射科医生对导管原位癌(DCIS)和浸润性癌存在的估计百分比可能性评估可预测组织学结果。

材料与方法

10名从业年限在1至39年的学术放射科医生对加利福尼亚大学四个医学中心归类为BI-RADS 4类或5类的250例病例进行了回顾性研究。在查看筛查和诊断性乳房X线照片及超声图像后,阅片者指定BI-RADS类别(1、2、3、4a、4b、4c或5),估计DCIS或浸润性癌的百分比可能性(0-100%),以及信心评级(1=低,5=高)。绘制了ROC曲线。

结果

62%(156/250)的病变为良性,38%(94/250)为恶性。有26例(10%)DCIS,20例(8%)浸润性癌,48例(19%)DCIS和浸润性癌病例。浸润性癌的AUC值为0.830-0.907,单独DCIS的AUC值为0.731-0.837。以估计百分比可能性20%或更高作为预测阈值(AUC最高的放射科医生为0.907;95%CI,0.864-0.951)计算浸润性癌的敏感度为82%(56/68),特异度为84%(153/182),阳性预测值(PPV)为66%(56/85),阴性预测值(NPV)为93%(153/165),准确度为84%([56 + 153]/250)。浸润性癌估计百分比可能性每增加20%,浸润性癌的几率增加约两倍(优势比,2.4)。对于DCIS,以40%或更高为阈值,计算出敏感度为81%(21/26),特异度为79%(178/224),PPV为31%(21/67),NPV为97%(178/183),准确度为80%([21 + 178]/250)。同样,在2%或更高(BI-RADS 4类)和95%或更高(BI-RADS 5类)的阈值下计算这些值以预测恶性肿瘤的存在。

结论

通过可能性估计,放射科医生可以相当准确地预测浸润性癌的存在。放射科医生指定的估计百分比可能性可以预测DCIS的存在,尽管准确性低于浸润性癌。

相似文献

2

引用本文的文献

本文引用的文献

8
Percutaneous image-guided core breast biopsy.经皮影像引导下乳腺粗针穿刺活检。
Radiol Clin North Am. 2002 May;40(3):483-500, vi. doi: 10.1016/s0033-8389(01)00011-2.
9
Variability in radiologists' interpretations of mammograms.放射科医生对乳房X光片解读的差异。
N Engl J Med. 1994 Dec 1;331(22):1493-9. doi: 10.1056/NEJM199412013312206.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验