Coskuner Orkid, Bergeron Denis E, Rincon Luis, Hudgens Jeffrey W, Gonzalez Carlos A
Computational Chemistry Group, Physical and Chemical Properties Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8380, Gaithersburg, Maryland 20899, USA.
J Phys Chem A. 2008 Apr 3;112(13):2940-7. doi: 10.1021/jp711759q. Epub 2008 Feb 27.
Car-Parrinello molecular dynamics (CPMD) simulations, DFT chemical reactivity index calculations, and mass spectrometric measurements are combined in an integrated effort to elucidate the details of the coordination of a transition-metal ion to a carbohydrate. The impact of the interaction with the FeIII ion on the glycosidic linkage conformation of methyl-alpha-d-mannopyranoside is studied by classical molecular dynamics (MD) and CPMD simulations. This study shows that FeIII interacts with specific hydroxyl oxygen atoms of the carbohydrate, affecting the ground state carbohydrate conformation. These conformational details are discussed in terms of a set of supporting experiments involving electrospray ionization mass spectrometry, and CPMD simulations clearly indicate that the specific conformational preference is due to intramolecular hydrogen bonding. Classical MD simulations proved insensitive to these important chemical properties. Thus, we demonstrate the importance of chemical reactivity calculations and CPMD simulations in predicting the active sites of biological molecules toward metal cations.
将卡-帕里尼罗分子动力学(CPMD)模拟、密度泛函理论(DFT)化学反应性指数计算和质谱测量结合起来,共同深入研究过渡金属离子与碳水化合物配位的细节。通过经典分子动力学(MD)和CPMD模拟,研究了与FeIII离子的相互作用对α-D-甘露吡喃糖苷甲基糖苷键构象的影响。该研究表明,FeIII与碳水化合物的特定羟基氧原子相互作用,影响碳水化合物的基态构象。通过一系列涉及电喷雾电离质谱的辅助实验对这些构象细节进行了讨论,CPMD模拟清楚地表明,特定的构象偏好是由于分子内氢键所致。经典MD模拟对这些重要化学性质不敏感。因此,我们证明了化学反应性计算和CPMD模拟在预测生物分子对金属阳离子的活性位点方面的重要性。