Ojeda Jesús J, Romero-Gonzalez María E, Bachmann Robert T, Edyvean Robert G J, Banwart Steven A
Cell-Mineral Interface Research Programme, Kroto Research Institute, The University of Sheffield, Broad Lane, Sheffield, United Kingdom.
Langmuir. 2008 Apr 15;24(8):4032-40. doi: 10.1021/la702284b. Epub 2008 Feb 27.
Aquabacterium commune, a predominant member of European drinking water biofilms, was chosen as a model bacterium to study the role of functional groups on the cell surface that control the changes in the chemical cell surface properties in aqueous electrolyte solutions at different pH values. Cell surface properties of A. commune were examined by potentiometric titrations, modeling, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. By combining FTIR data at different pH values and potentiometric titration data with thermodynamic model optimization, the presence, concentration, and changes of organic functional groups on the cell surface (e.g., carboxyl, phosphoryl, and amine groups) were inferred. The pH of zero proton charge, pH(zpc) = 3.7, found from titrations of A. commune at different electrolyte concentrations and resulting from equilibrium speciation calculations suggests that the net surface charge is negative at drinking water pH in the absence of other charge determining ions. In situ FTIR was used to describe and monitor chemical interactions between bacteria and liquid solutions at different pH in real time. XPS analysis was performed to quantify the elemental surface composition, to assess the local chemical environment of carbon and oxygen at the cell wall, and to calculate the overall concentrations of polysaccharides, peptides, and hydrocarbon compounds of the cell surface. Thermodynamic parameters for proton adsorption are compared with parameters for other gram-negative bacteria. This work shows how the combination of potentiometric titrations, modeling, XPS, and FTIR spectroscopy allows a more comprehensive characterization of bacterial cell surfaces and cell wall reactivity as the initial step to understand the fundamental mechanisms involved in bacterial adhesion to solid surfaces and transport in aqueous systems.
共生水杆菌是欧洲饮用水生物膜中的主要成员,被选为模式细菌,以研究细胞表面官能团在不同pH值的水性电解质溶液中控制细胞表面化学性质变化的作用。通过电位滴定、建模、X射线光电子能谱(XPS)和傅里叶变换红外(FTIR)光谱对共生水杆菌的细胞表面性质进行了研究。通过将不同pH值下的FTIR数据和电位滴定数据与热力学模型优化相结合,推断出细胞表面有机官能团(如羧基、磷酰基和胺基)的存在、浓度和变化。在不同电解质浓度下对共生水杆菌进行滴定,并通过平衡形态计算得出零质子电荷pH值(pH(zpc))为3.7,这表明在没有其他电荷决定离子的情况下,饮用水pH值下的净表面电荷为负。原位FTIR用于实时描述和监测不同pH值下细菌与液体溶液之间的化学相互作用。进行XPS分析以量化元素表面组成,评估细胞壁上碳和氧的局部化学环境,并计算细胞表面多糖、肽和碳氢化合物的总浓度。将质子吸附的热力学参数与其他革兰氏阴性菌的参数进行了比较。这项工作展示了电位滴定、建模、XPS和FTIR光谱的结合如何能够更全面地表征细菌细胞表面和细胞壁反应性,作为理解细菌粘附到固体表面和在水性系统中运输所涉及的基本机制的第一步。