Suppr超能文献

神经心理学中单个病例与对照或常模样本的比较:贝叶斯方法的发展

Comparison of a single case to a control or normative sample in neuropsychology: development of a Bayesian approach.

作者信息

Crawford John R, Garthwaite Paul H

机构信息

University of Aberdeen, Aberdeen, UK.

出版信息

Cogn Neuropsychol. 2007 Jun;24(4):343-72. doi: 10.1080/02643290701290146.

Abstract

Frequentist methods are available for comparison of a patient's test score (or score difference) to a control or normative sample; these methods also provide a point estimate of the percentage of the population that would obtain a more extreme score (or score difference) and, for some problems, an accompanying interval estimate (i.e., confidence limits) on this percentage. In the present paper we develop a Bayesian approach to these problems. Despite the very different approaches, the Bayesian and frequentist methods yield equivalent point and interval estimates when (a) a case's score is compared to that of a control sample, and (b) when the raw (i.e., unstandardized) difference between a case's scores on two tasks are compared to the differences in controls. In contrast, the two approaches differ with regard to point estimates of the abnormality of the difference between a case's standardized scores. The Bayesian method for standardized differences has the advantages that (a) it can directly evaluate the probability that a control will obtain a more extreme difference score, (b) it appropriately incorporates error in estimating the standard deviations of the tasks from which the patient's difference score is derived, and (c) it provides a credible interval for the abnormality of the difference between an individual's standardized scores; this latter problem has failed to succumb to frequentist methods. Computer programs that implement the Bayesian methods are described and made available.

摘要

频率学派方法可用于将患者的测试分数(或分数差异)与对照或常模样本进行比较;这些方法还提供了对获得更极端分数(或分数差异)的人群百分比的点估计,并且对于某些问题,还提供了关于该百分比的伴随区间估计(即置信限)。在本文中,我们针对这些问题开发了一种贝叶斯方法。尽管方法截然不同,但当(a)将一个病例的分数与对照样本的分数进行比较时,以及(b)将一个病例在两项任务上的原始(即未标准化)分数差异与对照组的差异进行比较时,贝叶斯方法和频率学派方法会得出等效的点估计和区间估计。相比之下,在病例标准化分数差异的异常点估计方面,这两种方法有所不同。标准化差异的贝叶斯方法具有以下优点:(a)它可以直接评估对照获得更极端差异分数的概率,(b)它适当地纳入了从患者差异分数所源自的任务中估计标准差时的误差,以及(c)它为个体标准化分数之间差异的异常提供了一个可信区间;后一个问题尚未被频率学派方法解决。文中描述并提供了实现贝叶斯方法的计算机程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验