Suppr超能文献

在陆地上的无肢体波动推进。

Limbless undulatory propulsion on land.

作者信息

Guo Z V, Mahadevan L

机构信息

School of Engineering and Applied Sciences and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3179-84. doi: 10.1073/pnas.0705442105. Epub 2008 Feb 28.

Abstract

We analyze the lateral undulatory motion of a natural or artificial snake or other slender organism that "swims" on land by propagating retrograde flexural waves. The governing equations for the planar lateral undulation of a thin filament that interacts frictionally with its environment lead to an incomplete system. Closures accounting for the forces generated by the internal muscles and the interaction of the filament with its environment lead to a nonlinear boundary value problem, which we solve using a combination of analytical and numerical methods. We find that the primary determinant of the shape of the organism is its interaction with the external environment, whereas the speed of the organism is determined primarily by the internal muscular forces, consistent with prior qualitative observations. Our model also allows us to pose and solve a variety of optimization problems such as those associated with maximum speed and mechanical efficiency, thus defining the performance envelope of this mode of locomotion.

摘要

我们分析了天然或人造蛇类或其他细长生物体在陆地上通过传播逆行弯曲波进行“游动”时的侧向波动运动。与周围环境存在摩擦相互作用的细丝平面侧向波动的控制方程导致了一个不完整的系统。考虑到内部肌肉产生的力以及细丝与周围环境的相互作用的封闭条件导致了一个非线性边值问题,我们使用解析方法和数值方法相结合来求解该问题。我们发现,生物体形状的主要决定因素是其与外部环境的相互作用,而生物体的速度主要由内部肌肉力量决定,这与先前的定性观察结果一致。我们的模型还使我们能够提出并解决各种优化问题,例如与最大速度和机械效率相关的问题,从而定义这种运动模式的性能范围。

相似文献

1
Limbless undulatory propulsion on land.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3179-84. doi: 10.1073/pnas.0705442105. Epub 2008 Feb 28.
3
What Defines Different Modes of Snake Locomotion?
Integr Comp Biol. 2020 Jul 1;60(1):156-170. doi: 10.1093/icb/icaa017.
4
A study of snake-like locomotion through the analysis of a flexible robot model.
Proc Math Phys Eng Sci. 2015 Dec 8;471(2184):20150054. doi: 10.1098/rspa.2015.0054.
5
Generation of propulsive force via vertical undulations in snakes.
J Exp Biol. 2021 Jul 1;224(13). doi: 10.1242/jeb.239020. Epub 2021 Jul 6.
6
Reaction Forces and Rib Function During Locomotion in Snakes.
Integr Comp Biol. 2020 Jul 1;60(1):215-231. doi: 10.1093/icb/icaa033.
7
Snakes mimic earthworms: propulsion using rectilinear travelling waves.
J R Soc Interface. 2013 May 1;10(84):20130188. doi: 10.1098/rsif.2013.0188. Print 2013 Jul 6.
8
Locomotor benefits of being a slender and slick sand swimmer.
J Exp Biol. 2015 Feb 1;218(Pt 3):440-50. doi: 10.1242/jeb.108357. Epub 2014 Dec 18.
9
Towards the optimization of passive undulatory locomotion on land: mathematical and physical models.
J R Soc Interface. 2023 Aug;20(205):20230330. doi: 10.1098/rsif.2023.0330. Epub 2023 Aug 9.
10
The mechanics of slithering locomotion.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10081-5. doi: 10.1073/pnas.0812533106. Epub 2009 Jun 8.

引用本文的文献

1
Towards the optimization of passive undulatory locomotion on land: mathematical and physical models.
J R Soc Interface. 2023 Aug;20(205):20230330. doi: 10.1098/rsif.2023.0330. Epub 2023 Aug 9.
3
Friction modulation in limbless, three-dimensional gaits and heterogeneous terrains.
Nat Commun. 2021 Oct 19;12(1):6076. doi: 10.1038/s41467-021-26276-x.
5
Bioinspired kirigami metasurfaces as assistive shoe grips.
Nat Biomed Eng. 2020 Aug;4(8):778-786. doi: 10.1038/s41551-020-0564-3. Epub 2020 Jun 1.
6
Mechanical diffraction reveals the role of passive dynamics in a slithering snake.
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4798-4803. doi: 10.1073/pnas.1808675116. Epub 2019 Feb 25.
7
Signatures of proprioceptive control in locomotion.
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758):20180208. doi: 10.1098/rstb.2018.0208.
8
Forward and inverse problems in the mechanics of soft filaments.
R Soc Open Sci. 2018 Jun 13;5(6):171628. doi: 10.1098/rsos.171628. eCollection 2018 Jun.
9
Dynamics and locomotion of flexible foils in a frictional environment.
Proc Math Phys Eng Sci. 2018 Jan;474(2209):20170503. doi: 10.1098/rspa.2017.0503. Epub 2018 Jan 17.
10
Serpentine locomotion through elastic energy release.
J R Soc Interface. 2017 May;14(130). doi: 10.1098/rsif.2017.0055.

本文引用的文献

1
ON THE LOCOMOTION OF SNAKES.
Science. 1932 Dec 23;76(1982):583-5. doi: 10.1126/science.76.1982.583.
2
The energetic cost of limbless locomotion.
Science. 1990 Aug 3;249(4968):524-7. doi: 10.1126/science.249.4968.524.
3
Kinematics, muscular activity and propulsion in gopher snakes.
J Exp Biol. 1998 Oct;201 (Pt 19):2669-84. doi: 10.1242/jeb.201.19.2669.
5
A myocybernetic control model of skeletal muscle.
Biol Cybern. 1977 Jan 20;25(2):103-19. doi: 10.1007/BF00337268.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验