Gazzola M, Dudte L H, McCormick A G, Mahadevan L
Department of Mechanical Science and Engineering, and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
R Soc Open Sci. 2018 Jun 13;5(6):171628. doi: 10.1098/rsos.171628. eCollection 2018 Jun.
Soft slender structures are ubiquitous in natural and artificial systems, in active and passive settings and across scales, from polymers and flagella, to snakes and space tethers. In this paper, we demonstrate the use of a simple and practical numerical implementation based on the Cosserat rod model to simulate the dynamics of filaments that can bend, twist, stretch and shear while interacting with complex environments via muscular activity, surface contact, friction and hydrodynamics. We validate our simulations by solving a number of forward problems involving the mechanics of passive filaments and comparing them with known analytical results, and extend them to study instabilities in stretched and twisted filaments that form solenoidal and plectonemic structures. We then study active filaments such as snakes and other slender organisms by solving inverse problems to identify optimal gaits for limbless locomotion on solid surfaces and in bulk liquids.
柔软细长结构在自然和人工系统中无处不在,无论是主动还是被动环境,且跨越各种尺度,从聚合物和鞭毛到蛇和太空系绳。在本文中,我们展示了基于柯塞尔杆模型的一种简单实用的数值实现方法,用于模拟细丝的动力学,这些细丝能够弯曲、扭转、拉伸和剪切,同时通过肌肉活动、表面接触、摩擦和流体动力学与复杂环境相互作用。我们通过解决一些涉及被动细丝力学的正向问题并将其与已知解析结果进行比较来验证我们的模拟,并将其扩展以研究形成螺线管状和扭结状结构的拉伸和扭转细丝中的不稳定性。然后,我们通过解决逆问题来研究诸如蛇和其他细长生物体等主动细丝,以确定在固体表面和大量液体中无肢体运动的最佳步态。