Suppr超能文献

建立个体特异性的人视神经乳头生物力学模型。第一部分:眼压引起的变形及几何形状的影响。

Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry.

作者信息

Sigal Ian A, Flanagan John G, Tertinegg Inka, Ethier C Ross

机构信息

Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada.

出版信息

Biomech Model Mechanobiol. 2009 Apr;8(2):85-98. doi: 10.1007/s10237-008-0120-7. Epub 2008 Feb 29.

Abstract

Glaucoma, the second most common cause of blindness worldwide, is an ocular disease characterized by progressive loss of retinal ganglion cell (RGC) axons. Biomechanical factors are thought to play a central role in RGC loss, but the specific mechanism underlying this disease remains unknown. Our goal was to characterize the biomechanical environment in the optic nerve head (ONH)--the region where RGC damage occurs--in human eyes. Post mortem human eyes were imaged, fixed at either 5 or 50 mmHg pressure and processed histologically to acquire serial sections through the ONH. Three-dimensional models of the ONH region were reconstructed from these sections and embedded in a generic scleral shell to create a model of an entire eye. We used finite element simulations to quantify the effects of an acute change in intraocular pressure from 5 to 50 mmHg on the ONH biomechanical environment. Computed strains varied substantially within the ONH, with the pre-laminar neural tissue and the lamina cribrosa showing the greatest strains. The mode of strain having the largest magnitude was third principal strain (compression), reaching 12-15% in both the lamina cribrosa and the pre-laminar neural tissue. Shear strains were also substantial. The distribution of strains in all ONH tissues was remarkably similar between eyes. Inter-individual variations in ONH geometry (anatomy) have only modest effects on ONH biomechanics, and may not explain inter-individual susceptibility to elevated intraocular pressure. Consistent with previous results using generic ONH models, the displacements of the vitreo-retinal interface and the anterior surface of the lamina cribrosa can differ substantially, suggesting that currently available optical imaging methods do not provide information of the acute deformations within ONH tissues. Predicted strains within ONH tissues are potentially biologically significant and support the hypothesis that biomechanical factors contribute to the initial insult that leads to RGC loss in glaucoma.

摘要

青光眼是全球第二大致盲原因,是一种以视网膜神经节细胞(RGC)轴突进行性丧失为特征的眼部疾病。生物力学因素被认为在RGC丧失中起核心作用,但该疾病的具体机制仍不清楚。我们的目标是描述人眼视神经乳头(ONH)——RGC发生损伤的区域——的生物力学环境。对死后的人眼进行成像,在5或50 mmHg压力下固定,并进行组织学处理以获取穿过ONH的连续切片。从这些切片重建ONH区域的三维模型,并嵌入通用巩膜壳中以创建全眼球模型。我们使用有限元模拟来量化眼内压从5 mmHg急剧变化到50 mmHg对ONH生物力学环境的影响。计算得出的应变在ONH内变化很大,板层前神经组织和筛板显示出最大应变。最大应变模式为第三主应变(压缩),在筛板和板层前神经组织中均达到12% - 15%。剪切应变也很大。所有ONH组织中的应变分布在不同眼睛之间非常相似。ONH几何结构(解剖学)的个体间差异对ONH生物力学的影响较小,可能无法解释个体间对眼内压升高的易感性。与之前使用通用ONH模型的结果一致,玻璃体视网膜界面和筛板前表面的位移可能有很大差异,这表明目前可用的光学成像方法无法提供ONH组织内急性变形的信息。ONH组织内预测的应变可能具有生物学意义,并支持生物力学因素导致青光眼RGC丧失的初始损伤这一假说。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验