Whinnett Zachary I, Briscoe Cathy, Davies Justin E R, Willson Keith, Manisty Charlotte H, Davies D Wyn, Peters Nicholas S, Kanagaratnam Prapa, Hughes Alun D, Mayet Jamil, Francis Darrel P
International Centre for Circulatory Health, St. Mary's Hospital and Imperial College, London, United Kingdom.
Heart Rhythm. 2008 Mar;5(3):378-86. doi: 10.1016/j.hrthm.2007.11.019. Epub 2007 Dec 4.
Atrioventricular (AV) optimization of cardiac resynchronization therapy (CRT) is typically calculated at rest. However, patients often become symptomatic during exercise.
In this study, we use acute noninvasive hemodynamics to optimize the AV delay of CRT during exercise and investigate whether this exercise optimum can be predicted from a three-phase resting model.
In 20 patients with CRT, we adjusted the sensed AV delay while the patient exercised on a treadmill up to a heart rate of 100 bpm to identify the hemodynamically optimal value. Separately, at rest, by pacing with three different configurations and calculating the sensed-paced difference, we calculated an "expected" value for the exercise optimum.
It was possible to perform AV delay optimization while a patient exercised. The resting three-phase model correlated well with the actual exercise optimal AV delay (r = 0.85, mean difference +/- standard deviation [SD] = 3.7 +/- 17 ms). Simply using measurements made at rest during atrial-sensed pacing showed a poorer correlation with exercise (r = 0.64, mean difference +/- SD = 2.2 +/- 24 ms). The three-phase resting model allows improved exercise hemodynamics to be achieved. Programming according to the three-phase resting model yields an exercise blood pressure of only 0.5 mmHg (+/-1.4 mmHg; P = NS) less than the true exercise optimum, whereas programming the resting sensed optimum yields an exercise blood pressure of 1.4 mmHg (+/-2.2 mmHg, P = .02) less than the true optimum.
Using acute noninvasive hemodynamics and a protocol of alternations, it is possible to optimize the AV delay of cardiac resynchronization devices even while a patient exercises. In clinical practice, the exercise optimum AV delay could be determined from three phases of resting measurements, without performing exercise.
心脏再同步治疗(CRT)的房室(AV)优化通常在静息状态下计算。然而,患者在运动期间常出现症状。
在本研究中,我们使用急性非侵入性血流动力学来优化运动期间CRT的房室延迟,并研究是否可以从三相静息模型预测这种运动最佳值。
在20例CRT患者中,当患者在跑步机上运动至心率100次/分时,我们调整感知到的房室延迟以确定血流动力学最佳值。另外,在静息状态下,通过三种不同配置进行起搏并计算感知起搏差异,我们计算出运动最佳值的“预期”值。
在患者运动时进行房室延迟优化是可行的。静息三相模型与实际运动最佳房室延迟相关性良好(r = 0.85,平均差异±标准差[SD]= 3.7±17毫秒)。仅使用心房感知起搏期间的静息测量结果与运动的相关性较差(r = 0.64,平均差异±SD = 2.2±24毫秒)。三相静息模型可实现更好的运动血流动力学。根据三相静息模型进行编程产生的运动血压比真正的运动最佳值仅低0.5 mmHg(±1.4 mmHg;P =无显著性差异),而根据静息感知最佳值进行编程产生的运动血压比真正的最佳值低1.4 mmHg(±2.2 mmHg,P = 0.02)。
使用急性非侵入性血流动力学和交替方案,即使在患者运动时也可以优化心脏再同步装置的房室延迟。在临床实践中,可以通过静息测量的三个阶段确定运动最佳房室延迟,而无需进行运动。