Suppr超能文献

一种基于二元匹配对数据的更强大的非劣效性精确检验。

A more powerful exact test of noninferiority from binary matched-pairs data.

作者信息

Lloyd Chris J, Moldovan Max V

机构信息

Melbourne Business School, University of Melbourne, Carlton, Vic. 3053, Australia.

出版信息

Stat Med. 2008 Aug 15;27(18):3540-9. doi: 10.1002/sim.3229.

Abstract

Assessing the therapeutic noninferiority of one medical treatment compared with another is often based on the difference in response rates from a matched binary pairs design. This paper develops a new exact unconditional test for noninferiority that is more powerful than available alternatives. There are two new elements presented in this paper. First, we introduce the likelihood ratio statistic as an alternative to the previously proposed score statistic of Nam (Biometrics 1997; 53:1422-1430). Second, we eliminate the nuisance parameter by estimation followed by maximization as an alternative to the partial maximization of Berger and Boos (Am. Stat. Assoc. 1994; 89:1012-1016) or traditional full maximization. Based on an extensive numerical study, we recommend tests based on the score statistic, the nuisance parameter being controlled by estimation followed by maximization.

摘要

评估一种医学治疗相对于另一种治疗的治疗非劣效性通常基于匹配二元对设计中反应率的差异。本文开发了一种新的精确无条件非劣效性检验,其效力比现有方法更强。本文提出了两个新元素。首先,我们引入似然比统计量,以替代Nam之前提出的得分统计量(《生物统计学》1997年;53:1422 - 1430)。其次,我们通过先估计然后最大化来消除干扰参数,以替代Berger和Boos的部分最大化方法(《美国统计协会杂志》1994年;89:1012 - 1016)或传统的完全最大化方法。基于广泛的数值研究,我们推荐基于得分统计量的检验,干扰参数通过先估计然后最大化来控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验