Suppr超能文献

通过蛋白质组学和基因表达图谱整合鉴定出的新型乳腺癌生物标志物。

Novel breast cancer biomarkers identified by integrative proteomic and gene expression mapping.

作者信息

Ou Keli, Yu Kun, Kesuma Djohan, Hooi Michelle, Huang Ning, Chen Wei, Lee Suet Ying, Goh Xin Pei, Tan Lay Keng, Liu Jia, Soon Sou Yen, Bin Abdul Rashid Suhaimi, Putti Thomas C, Jikuya Hiroyuki, Ichikawa Tetsuo, Nishimura Osamu, Salto-Tellez Manuel, Tan Patrick

机构信息

Agenica Research Pte Ltd., National Cancer Centre of Singarope, and Genome Institute of Singapore, 11 Hospital Drive, Singapore 169610.

出版信息

J Proteome Res. 2008 Apr;7(4):1518-28. doi: 10.1021/pr700820g. Epub 2008 Mar 5.

Abstract

Proteomic and transcriptomic platforms both play important roles in cancer research, with differing strengths and limitations. Here, we describe a proteo-transcriptomic integrative strategy for discovering novel cancer biomarkers, combining the direct visualization of differentially expressed proteins with the high-throughput scale of gene expression profiling. Using breast cancer as a case example, we generated comprehensive two-dimensional electrophoresis (2DE)/mass spectrometry (MS) proteomic maps of cancer (MCF-7 and HCC-38) and control (CCD-1059Sk) cell lines, identifying 1724 expressed protein spots representing 484 different protein species. The differentially expressed cell-line proteins were then mapped to mRNA transcript databases of cancer cell lines and primary breast tumors to identify candidate biomarkers that were concordantly expressed at the gene expression level. Of the top nine selected biomarker candidates, we reidentified ANX1, a protein previously reported to be differentially expressed in breast cancers and normal tissues, and validated three other novel candidates, CRAB, 6PGL, and CAZ2, as differentially expressed proteins by immunohistochemistry on breast tissue microarrays. In total, close to half (4/9) of our protein biomarker candidates were successfully validated. Our study thus illustrates how the systematic integration of proteomic and transcriptomic data from both cell line and primary tissue samples can prove advantageous for accelerating cancer biomarker discovery.

摘要

蛋白质组学和转录组学平台在癌症研究中都发挥着重要作用,各有不同的优势和局限性。在此,我们描述了一种蛋白质组-转录组整合策略,用于发现新型癌症生物标志物,该策略将差异表达蛋白质的直接可视化与基因表达谱的高通量规模相结合。以乳腺癌为例,我们生成了癌症(MCF-7和HCC-38)和对照(CCD-1059Sk)细胞系的全面二维电泳(2DE)/质谱(MS)蛋白质组图谱,鉴定出代表484种不同蛋白质的1724个表达蛋白点。然后将差异表达的细胞系蛋白映射到癌细胞系和原发性乳腺肿瘤的mRNA转录数据库,以鉴定在基因表达水平上一致表达的候选生物标志物。在选出的前九个生物标志物候选物中,我们重新鉴定了ANX1,一种先前报道在乳腺癌和正常组织中差异表达的蛋白质,并通过乳腺组织微阵列上的免疫组织化学验证了其他三个新型候选物CRAB、6PGL和CAZ2为差异表达蛋白。总体而言,我们近一半(4/9)的蛋白质生物标志物候选物得到了成功验证。因此,我们的研究说明了来自细胞系和原发性组织样本的蛋白质组学和转录组学数据的系统整合如何有利于加速癌症生物标志物的发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验