Hui Simon T Y, Andres Allen M, Miller Amber K, Spann Nathanael J, Potter Douglas W, Post Noah M, Chen Amelia Z, Sachithanantham Sowbarnika, Jung Dae Young, Kim Jason K, Davis Roger A
Department of Biology, The Molecular Biology and Heart Institutes, The BioSciences Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3921-6. doi: 10.1073/pnas.0800293105. Epub 2008 Mar 5.
Thioredoxin-interacting protein (Txnip) inhibits thioredoxin NADPH-dependent reduction of protein disulfides. Total Txnip knockout (TKO) mice adapted inappropriately to prolonged fasting by shifting fuel dependence of skeletal muscle and heart from fat and ketone bodies to glucose. TKO mice exhibited increased Akt signaling, insulin sensitivity, and glycolysis in oxidative tissues (skeletal muscle and hearts) but not in lipogenic tissues (liver and adipose tissue). The selective activation of Akt in skeletal muscle and hearts was associated with impaired mitochondrial fuel oxidation and the accumulation of oxidized (inactive) PTEN, whose activity depends on reduction of two critical cysteine residues. Whereas muscle- and heart-specific Txnip knockout mice recapitulated the metabolic phenotype exhibited by TKO mice, liver-specific Txnip knockout mice were similar to WT mice. Embryonic fibroblasts derived from knockout mice also accumulated oxidized (inactive) PTEN and had elevated Akt phosphorylation. In addition, they had faster growth rates and increased dependence on anaerobic glycolysis due to impaired mitochondrial fuel oxidation, and they were resistant to doxorubicin-facilitated respiration-dependent apoptosis. In the absence of Txnip, oxidative inactivation of PTEN and subsequent activation of Akt attenuated mitochondrial respiration, resulting in the accumulation of NADH, a competitive inhibitor of thioredoxin NADPH-reductive activation of PTEN. These findings indicate that, in nonlipogenic tissues, Txnip is required to maintain sufficient thioredoxin NADPH activity to reductively reactivate oxidized PTEN and oppose Akt downstream signaling.
硫氧还蛋白相互作用蛋白(Txnip)抑制硫氧还蛋白依赖NADPH的蛋白质二硫键还原。完全敲除Txnip(TKO)的小鼠通过将骨骼肌和心脏的燃料依赖从脂肪和酮体转变为葡萄糖,对长期禁食的适应不当。TKO小鼠在氧化组织(骨骼肌和心脏)中表现出Akt信号传导增加、胰岛素敏感性增加和糖酵解增加,但在生脂组织(肝脏和脂肪组织)中则不然。骨骼肌和心脏中Akt的选择性激活与线粒体燃料氧化受损以及氧化型(无活性)PTEN的积累有关,PTEN的活性取决于两个关键半胱氨酸残基的还原。虽然肌肉和心脏特异性敲除Txnip的小鼠重现了TKO小鼠表现出的代谢表型,但肝脏特异性敲除Txnip的小鼠与野生型小鼠相似。来自敲除小鼠的胚胎成纤维细胞也积累了氧化型(无活性)PTEN,并且Akt磷酸化水平升高。此外,由于线粒体燃料氧化受损,它们具有更快的生长速度,对无氧糖酵解的依赖性增加,并且对阿霉素促进的呼吸依赖性细胞凋亡具有抗性。在没有Txnip的情况下,PTEN的氧化失活以及随后Akt的激活减弱了线粒体呼吸,导致NADH积累,NADH是硫氧还蛋白NADPH还原激活PTEN的竞争性抑制剂。这些发现表明,在非生脂组织中,需要Txnip来维持足够的硫氧还蛋白NADPH活性,以还原性地重新激活氧化型PTEN并对抗Akt下游信号传导。