Suppr超能文献

从人类大脑活动中识别自然图像。

Identifying natural images from human brain activity.

作者信息

Kay Kendrick N, Naselaris Thomas, Prenger Ryan J, Gallant Jack L

机构信息

Department of Psychology, University of California, Berkeley, California 94720, USA.

出版信息

Nature. 2008 Mar 20;452(7185):352-5. doi: 10.1038/nature06713. Epub 2008 Mar 5.

Abstract

A challenging goal in neuroscience is to be able to read out, or decode, mental content from brain activity. Recent functional magnetic resonance imaging (fMRI) studies have decoded orientation, position and object category from activity in visual cortex. However, these studies typically used relatively simple stimuli (for example, gratings) or images drawn from fixed categories (for example, faces, houses), and decoding was based on previous measurements of brain activity evoked by those same stimuli or categories. To overcome these limitations, here we develop a decoding method based on quantitative receptive-field models that characterize the relationship between visual stimuli and fMRI activity in early visual areas. These models describe the tuning of individual voxels for space, orientation and spatial frequency, and are estimated directly from responses evoked by natural images. We show that these receptive-field models make it possible to identify, from a large set of completely novel natural images, which specific image was seen by an observer. Identification is not a mere consequence of the retinotopic organization of visual areas; simpler receptive-field models that describe only spatial tuning yield much poorer identification performance. Our results suggest that it may soon be possible to reconstruct a picture of a person's visual experience from measurements of brain activity alone.

摘要

神经科学中的一个具有挑战性的目标是能够从大脑活动中读出或解码心理内容。最近的功能磁共振成像(fMRI)研究已经从视觉皮层的活动中解码出了方向、位置和物体类别。然而,这些研究通常使用相对简单的刺激(例如光栅)或从固定类别中提取的图像(例如面孔、房屋),并且解码是基于之前对相同刺激或类别所诱发的大脑活动的测量。为了克服这些限制,我们在此开发了一种基于定量感受野模型的解码方法,该模型表征了早期视觉区域中视觉刺激与fMRI活动之间的关系。这些模型描述了单个体素对空间、方向和空间频率的调谐,并直接从自然图像诱发的反应中进行估计。我们表明,这些感受野模型使得从大量全新的自然图像中识别出观察者看到的具体图像成为可能。识别不仅仅是视觉区域视网膜拓扑组织的结果;仅描述空间调谐的更简单的感受野模型产生的识别性能要差得多。我们的结果表明,也许很快就有可能仅通过大脑活动测量来重建一个人的视觉体验画面。

相似文献

1
Identifying natural images from human brain activity.
Nature. 2008 Mar 20;452(7185):352-5. doi: 10.1038/nature06713. Epub 2008 Mar 5.
2
Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex.
J Neurosci. 2017 Feb 1;37(5):1187-1196. doi: 10.1523/JNEUROSCI.2690-16.2016. Epub 2016 Dec 21.
4
Decoding the visual and subjective contents of the human brain.
Nat Neurosci. 2005 May;8(5):679-85. doi: 10.1038/nn1444. Epub 2005 Apr 24.
5
Reconstructing Perceived and Retrieved Faces from Activity Patterns in Lateral Parietal Cortex.
J Neurosci. 2016 Jun 1;36(22):6069-82. doi: 10.1523/JNEUROSCI.4286-15.2016.
6
Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data.
J Neurophysiol. 2017 Feb 1;117(2):818-835. doi: 10.1152/jn.00590.2016. Epub 2016 Nov 30.
7
Coarse-scale biases for spirals and orientation in human visual cortex.
J Neurosci. 2013 Dec 11;33(50):19695-703. doi: 10.1523/JNEUROSCI.0889-13.2013.
8
The effect of acquisition resolution on orientation decoding from V1 BOLD fMRI at 7T.
Neuroimage. 2017 Mar 1;148:64-76. doi: 10.1016/j.neuroimage.2016.12.040. Epub 2017 Jan 4.
9
Contribution of large scale biases in decoding of direction-of-motion from high-resolution fMRI data in human early visual cortex.
Neuroimage. 2012 Nov 15;63(3):1623-32. doi: 10.1016/j.neuroimage.2012.07.066. Epub 2012 Aug 17.
10
3D Contrast Image Reconstruction From Human Brain Activity.
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2699-2710. doi: 10.1109/TNSRE.2020.3035818. Epub 2021 Jan 28.

引用本文的文献

1
High-level visual representations in the human brain are aligned with large language models.
Nat Mach Intell. 2025;7(8):1220-1234. doi: 10.1038/s42256-025-01072-0. Epub 2025 Aug 7.
2
Functional brain mapping using whole-head very high-density diffuse optical tomography.
Imaging Neurosci (Camb). 2025 Jun 20;3. doi: 10.1162/IMAG.a.54. eCollection 2025.
3
The Voxelwise Encoding Model framework: A tutorial introduction to fitting encoding models to fMRI data.
Imaging Neurosci (Camb). 2025 May 9;3. doi: 10.1162/imag_a_00575. eCollection 2025.
4
Demystifying the likelihood of reidentification in neuroimaging data: A technical and regulatory analysis.
Imaging Neurosci (Camb). 2024 Mar 22;2. doi: 10.1162/imag_a_00111. eCollection 2024.
5
Inferring Cinematic Aesthetic Biases from the Statistics of Early Movies.
Entropy (Basel). 2025 Jun 30;27(7):707. doi: 10.3390/e27070707.
7
In silico discovery of representational relationships across visual cortex.
Nat Hum Behav. 2025 Jun 25. doi: 10.1038/s41562-025-02252-z.
8
Image statistics substantiate Gaudí's naturalistic design principles.
Sci Rep. 2025 Jun 20;15(1):20181. doi: 10.1038/s41598-025-06007-8.
9
Low-Rank Tensor Encoding Models Decompose Natural Speech Comprehension Processes.
bioRxiv. 2025 Jun 3:2025.06.02.657514. doi: 10.1101/2025.06.02.657514.
10
Same Cause; Different Effects in the Brain.
Proc Mach Learn Res. 2022 Apr;177:787-825.

本文引用的文献

1
Population receptive field estimates in human visual cortex.
Neuroimage. 2008 Jan 15;39(2):647-60. doi: 10.1016/j.neuroimage.2007.09.034. Epub 2007 Sep 29.
2
Inverse retinotopy: inferring the visual content of images from brain activation patterns.
Neuroimage. 2006 Dec;33(4):1104-16. doi: 10.1016/j.neuroimage.2006.06.062. Epub 2006 Oct 9.
3
The radial bias: a different slant on visual orientation sensitivity in human and nonhuman primates.
Neuron. 2006 Sep 7;51(5):661-70. doi: 10.1016/j.neuron.2006.07.021.
4
Decoding mental states from brain activity in humans.
Nat Rev Neurosci. 2006 Jul;7(7):523-34. doi: 10.1038/nrn1931.
5
Complete functional characterization of sensory neurons by system identification.
Annu Rev Neurosci. 2006;29:477-505. doi: 10.1146/annurev.neuro.29.051605.113024.
6
A cortical region consisting entirely of face-selective cells.
Science. 2006 Feb 3;311(5761):670-4. doi: 10.1126/science.1119983.
7
Fast readout of object identity from macaque inferior temporal cortex.
Science. 2005 Nov 4;310(5749):863-6. doi: 10.1126/science.1117593.
8
Predicting the stream of consciousness from activity in human visual cortex.
Curr Biol. 2005 Jul 26;15(14):1301-7. doi: 10.1016/j.cub.2005.06.026.
9
Decoding the visual and subjective contents of the human brain.
Nat Neurosci. 2005 May;8(5):679-85. doi: 10.1038/nn1444. Epub 2005 Apr 24.
10
Predicting the orientation of invisible stimuli from activity in human primary visual cortex.
Nat Neurosci. 2005 May;8(5):686-91. doi: 10.1038/nn1445. Epub 2005 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验