Norris Patrick R, Anderson Steven M, Jenkins Judith M, Williams Anna E, Morris John A
Division of Trauma, Burn, and Surgical Critical Care, Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
Shock. 2008 Jul;30(1):17-22. doi: 10.1097/SHK.0b013e318164e4d0.
Complexity is a measure of variation and randomness potentially indicating improvement or deterioration in critically ill patients. Previously, we have shown integer heart rate (HR) multiscale entropy (MSE), an indicator of complexity, predicts death based on long duration (12 h) and dense (>or=0.4 Hz) windows of HR data. However, such restrictions reduce the use of MSE in the clinical setting. We hypothesized MSE predicts death using HR data of shorter duration and lower density. During the initial 24 h of intensive care unit stay, 3,154 patients had at least 3 h of continuous integer HR sampled. The first continuous window of 3, 6, 9, and 12 h was selected for each patient regardless of density, and an open-source MSE algorithm was applied (M. Costa, www.physionet.org; m = 2; r = 0.15). Risk of death based on MSE, alone and with covariates (age, sex, injury severity score), was assessed using randomly selected logistic regression in half of the cases. Area under the receiver operator curve (AUC) was computed in the other half in subgroups having various durations and densities of HR data. At days 2.3 (median) and 4.9 (mean), 441 patients (14%) died. Multiscale entropy stratified patients by mortality and was an independent predictor of death using 3 h or more of data. Multiscale entropy alone (AUC = 0.66 - 0.71) predicted death comparably to covariates alone (AUC = 0.72). We conclude: (1) Heart rate MSE within hours of admission predicts death occurring days later. (2) Multiscale entropy is robust to variation in bedside data duration and density occurring in a working intensive care unit. (3) Complexity may be a new clinical biomarker of outcome.
复杂性是一种变异和随机性的度量,可能表明危重症患者病情的改善或恶化。此前,我们已经表明,整数心率(HR)多尺度熵(MSE)作为复杂性的一个指标,基于长时间(12小时)和高密度(≥0.4Hz)的心率数据窗口可预测死亡。然而,这些限制降低了MSE在临床环境中的应用。我们假设MSE可使用更短时间和更低密度的心率数据来预测死亡。在重症监护病房住院的最初24小时内,3154例患者有至少3小时的连续整数心率采样。为每位患者选择第一个连续的3、6、9和12小时窗口,而不考虑密度,并应用开源的MSE算法(M. Costa,www.physionet.org;m = 2;r = 0.15)。在一半的病例中,使用随机选择的逻辑回归评估基于MSE单独以及与协变量(年龄、性别、损伤严重程度评分)一起的死亡风险。在另一半具有不同心率数据持续时间和密度的亚组中计算受试者操作特征曲线下面积(AUC)。在第2.3天(中位数)和第4.9天(平均数),441例患者(14%)死亡。多尺度熵按死亡率对患者进行分层,并且使用3小时或更长时间的数据时是死亡的独立预测因子。单独的多尺度熵(AUC = 0.66 - 0.71)预测死亡的能力与单独的协变量(AUC = 0.72)相当。我们得出结论:(1)入院数小时内的心率MSE可预测数天后发生的死亡。(2)多尺度熵对于工作中的重症监护病房床边数据持续时间和密度的变化具有稳健性。(3)复杂性可能是一种新的临床结局生物标志物。