Romanov P, O'Neill N T, Royer A, McArthur B L
Centre d'Applications et de Recherches en Télédétection, Université de Sherbrooke, Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Quebec J1K 2R1, Canada.
Appl Opt. 1999 Dec 20;38(36):7305-20. doi: 10.1364/ao.38.007305.
Ground-based sunphotometer observation of direct and scattered solar radiation is a traditional tool for providing data on aerosol optical properties. Spectral transmission and solar aureole measurements provide an optical source of aerosol information, which can be inverted for retrieval of microphysical properties (particle size distribution and refractive index). However, to infer these aerosol properties from ground-based remote-sensing measurements, special numerical inversion methods should be developed and applied. We propose two improvements to the existing inversion techniques employed to derive aerosol microphysical properties from combined atmospheric transmission and solar aureole measurements. First, the aerosol refractive index is directly included in the inversion procedure and is retrieved simultaneously with the particle size spectra. Second, we allow for real or effective instrumental pointing errors by including a correction factor for scattering angle errors as a retrieved inversion parameter. The inversion technique is validated by numerical simulations and applied to field data. It is shown that ground-based sunphotometer measurements enable one to derive the real part of the aerosol refractive index with an absolute error of 0.03-0.05 and to distinguish roughly between weakly and strongly absorbing aerosols. The aureole angular observation scheme can be refined with an absolute accuracy of 0.15-0.19 deg. Offset corrections to the scattering angle error are generally found to be small and consistently of the order of -0.17. This error magnitude is deduced to be due primarily to nonlinear field-of-view averaging effects rather than to instrumental errors.
地基太阳光度计对太阳直射辐射和散射辐射的观测是获取气溶胶光学特性数据的传统工具。光谱透射率和日晕测量提供了气溶胶信息的光学来源,可通过反演来获取微观物理特性(粒径分布和折射率)。然而,要从地基遥感测量中推断这些气溶胶特性,需要开发并应用特殊的数值反演方法。我们对现有的用于从大气传输和日晕测量组合中推导气溶胶微观物理特性的反演技术提出了两点改进。第一,将气溶胶折射率直接纳入反演过程,并与粒径谱同时反演。第二,通过将散射角误差的校正因子作为反演参数纳入,来考虑实际或有效的仪器指向误差。该反演技术通过数值模拟得到验证,并应用于实地数据。结果表明,地基太阳光度计测量能够以0.03 - 0.05的绝对误差推导出气溶胶折射率的实部,并大致区分弱吸收气溶胶和强吸收气溶胶。日晕角观测方案的精度可提高到0.15 - 0.19度的绝对精度。散射角误差的偏移校正通常较小,一致地约为 -0.17。推断该误差量级主要是由于非线性视场平均效应而非仪器误差。