Tawada K, Sekimoto K
Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
J Theor Biol. 1991 May 21;150(2):193-200. doi: 10.1016/s0022-5193(05)80331-5.
Recently Vale et al. (1989, Cell 59, 915-925.) reported an observation of the one-dimensional Brownian movement of microtubules bound to flagellar dynein through a weak-binding interaction. In this study, we propose a theoretical model of this phenomenon. Our model consists of a rigid microtubule associated with a number of elastic dynein heads through a weak-binding interaction at equilibrium. The model implies that (1) the Brownian motion of the microtubule is not directly driven by the atomic collision of the solvent particles, but is driven by the thermally-generated structural fluctuations of the dynein heads which interact with the microtubule; (2) dynein heads through a weak-binding interaction exert a frictional drag force on the sliding motion of the microtubule and the drag force is proportional to the sliding velocity the same as in hydrodynamic viscous friction. This protein friction, with such viscous-like characteristics, may well play a role as a velocity-limiting factor in the normal ATP-induced sliding movement of motile proteins.
最近,瓦尔等人(1989年,《细胞》第59卷,915 - 925页)报道了对通过弱结合相互作用与鞭毛动力蛋白结合的微管的一维布朗运动的观察。在本研究中,我们提出了这一现象的理论模型。我们的模型由一根刚性微管组成,在平衡状态下,通过弱结合相互作用与多个弹性动力蛋白头部相连。该模型表明:(1)微管的布朗运动并非直接由溶剂颗粒的原子碰撞驱动,而是由与微管相互作用的动力蛋白头部的热致结构波动驱动;(2)动力蛋白头部通过弱结合相互作用对微管的滑动运动施加摩擦阻力,且该阻力与滑动速度成正比,这与流体动力学粘性摩擦情况相同。这种具有类似粘性特征的蛋白质摩擦,很可能在正常ATP诱导的运动蛋白滑动运动中作为速度限制因素发挥作用。