Suppr超能文献

使用形式概念分析进行微阵列数据比较。

Using formal concept analysis for microarray data comparison.

作者信息

Choi V, Huang Y, Lam V, Potter D, Laubenbacher R, Duca K

机构信息

Department of Computer Science, Virginia Tech, 660 McBryde Hall, Blacksburg, VA 24061, USA.

出版信息

J Bioinform Comput Biol. 2008 Feb;6(1):65-75. doi: 10.1142/s021972000800328x.

Abstract

Microarray technologies, which can measure tens of thousands of gene expression values simultaneously in a single experiment, have become a common research method for biomedical researchers. Computational tools to analyze microarray data for biological discovery are needed. In this paper, we investigate the feasibility of using formal concept analysis (FCA) as a tool for microarray data analysis. The method of FCA builds a (concept) lattice from the experimental data together with additional biological information. For microarray data, each vertex of the lattice corresponds to a subset of genes that are grouped together according to their expression values and some biological information related to gene function. The lattice structure of these gene sets might reflect biological relationships in the dataset. Similarities and differences between experiments can then be investigated by comparing their corresponding lattices according to various graph measures. We apply our method to microarray data derived from influenza-infected mouse lung tissue and healthy controls. Our preliminary results show the promise of our method as a tool for microarray data analysis.

摘要

微阵列技术能够在单次实验中同时测量数万个基因的表达值,已成为生物医学研究人员常用的研究方法。因此,需要用于分析微阵列数据以进行生物学发现的计算工具。在本文中,我们研究了使用形式概念分析(FCA)作为微阵列数据分析工具的可行性。FCA方法基于实验数据以及额外的生物学信息构建一个(概念)格。对于微阵列数据,格的每个顶点对应一组基因,这些基因根据其表达值以及与基因功能相关的一些生物学信息进行分组。这些基因集的格结构可能反映数据集中的生物学关系。然后,可以根据各种图形度量比较相应的格来研究实验之间的异同。我们将我们的方法应用于来自流感感染小鼠肺组织和健康对照的微阵列数据。我们的初步结果表明我们的方法有望成为微阵列数据分析的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验