Suppr超能文献

血流中红细胞与血小板相互作用的微观尺度动态模拟

Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.

作者信息

AlMomani T, Udaykumar H S, Marshall J S, Chandran K B

机构信息

Department of Biomedical Engineering, 1402 SC, College of Engineering, University of Iowa, Iowa City, IA 52242-1527, USA.

出版信息

Ann Biomed Eng. 2008 Jun;36(6):905-20. doi: 10.1007/s10439-008-9478-z. Epub 2008 Mar 11.

Abstract

Platelet activation, adhesion, and aggregation on the blood vessel and implants result in the formation of mural thrombi. Platelet dynamics in blood flow is influenced by the far more numerous erythrocytes (RBCs). This is particularly the case in the smaller blood vessels (arterioles) and in constricted regions of blood flow (such as in valve leakage and hinge regions) where the dimensions of formed elements of blood become comparable with that of the flow geometry. In such regions, models to predict platelet motion, activation, aggregation and adhesion must account for platelet-RBC interactions. This paper studies platelet-RBC interactions in shear flows by performing simulations of micro-scale dynamics using a computational fluid dynamics (CFD) model. A level-set sharp-interface immersed boundary method is employed in the computations in which RBC and platelet boundaries are tracked on a two-dimensional Cartesian grid. The RBCs are assumed to have an elliptical shape and to deform elastically under fluid forces while the platelets are assumed to behave as rigid particles of circular shape. Forces and torques between colliding blood cells are modeled using an extension of the soft-sphere model for elliptical particles. RBCs and platelets are transported under the forces and torques induced by fluid flow and cell-cell and cell-platelet collisions. The simulations show that platelet migration toward the wall is enhanced with increasing hematocrit, in agreement with past experimental observations. This margination is seen to occur due to hydrodynamic forces rather than collisional forces or volumetric exclusion effects. The effect of fluid shear forces on the platelets increases exponentially as a function of hematocrit for the range of parameters covered in this study. The micro-scale analysis can be potentially employed to obtain a deterministic relationship between fluid forces and platelet activation and aggregation in blood flow past cardiovascular implants.

摘要

血小板在血管和植入物上的激活、黏附及聚集会导致壁血栓的形成。血流中的血小板动力学受数量多得多的红细胞(RBCs)影响。在较小的血管(小动脉)以及血流受限区域(如瓣膜泄漏和铰链区域)尤其如此,在这些区域血液中的有形成分尺寸与流动几何形状相当。在这些区域,预测血小板运动、激活、聚集和黏附的模型必须考虑血小板与红细胞的相互作用。本文通过使用计算流体动力学(CFD)模型对微观尺度动力学进行模拟,研究剪切流中血小板与红细胞的相互作用。计算中采用了水平集锐界面浸入边界方法,在二维笛卡尔网格上跟踪红细胞和血小板的边界。假定红细胞呈椭圆形,并在流体力作用下弹性变形,而血小板假定为圆形刚性颗粒。使用椭圆颗粒软球模型的扩展来模拟碰撞血细胞之间的力和扭矩。红细胞和血小板在流体流动以及细胞 - 细胞和细胞 - 血小板碰撞所诱导的力和扭矩作用下进行传输。模拟结果表明,随着血细胞比容增加,血小板向壁的迁移增强,这与过去的实验观察结果一致。这种边缘化现象被认为是由流体动力而非碰撞力或体积排斥效应引起的。在本研究涵盖的参数范围内,流体剪切力对血小板的影响随血细胞比容呈指数增加。微观尺度分析有可能用于获得血流经过心血管植入物时流体力与血小板激活和聚集之间的确定性关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验