Suppr超能文献

步行步幅间隔中长程相关性的可能生物力学起源

Possible Biomechanical Origins of the Long-Range Correlations in Stride Intervals of Walking.

作者信息

Gates Deanna H, Su Jimmy L, Dingwell Jonathan B

机构信息

Department of Biomedical Engineering, University of Texas, Austin, TX 78712.

出版信息

Physica A. 2007 Jul 1;380:259-270. doi: 10.1016/j.physa.2007.02.061.

Abstract

When humans walk, the time duration of each stride varies from one stride to the next. These temporal fluctuations exhibit long-range correlations. It has been suggested that these correlations stem from higher nervous system centers in the brain that control gait cycle timing. Existing proposed models of this phenomenon have focused on neurophysiological mechanisms that might give rise to these long-range correlations, and generally ignored potential alternative mechanical explanations. We hypothesized that a simple mechanical system could also generate similar long-range correlations in stride times. We modified a very simple passive dynamic model of bipedal walking to incorporate forward propulsion through an impulsive force applied to the trailing leg at each push-off. Push-off forces were varied from step to step by incorporating both "sensory" and "motor" noise terms that were regulated by a simple proportional feedback controller. We generated 400 simulations of walking, with different combinations of sensory noise, motor noise, and feedback gain. The stride time data from each simulation were analyzed using detrended fluctuation analysis to compute a scaling exponent, a. This exponent quantified how each stride interval was correlated with previous and subsequent stride intervals over different time scales. For different variations of the noise terms and feedback gain, we obtained short-range correlations (alpha < 0.5), uncorrelated time series (alpha = 0.5), long-range correlations (0.5 < alpha < 1.0), or Brownian motion (alpha > 1.0). Our results indicate that a simple biomechanical model of walking can generate long-range correlations and thus perhaps these correlations are not a complex result of higher level neuronal control, as has been previously suggested.

摘要

人类行走时,每一步的时长在不同步幅之间会有所变化。这些时间波动呈现出长程相关性。有人提出,这些相关性源于大脑中控制步态周期时间的高级神经系统中枢。现有的关于这一现象的模型主要关注可能产生这些长程相关性的神经生理机制,通常忽略了潜在的其他力学解释。我们推测,一个简单的力学系统也能在步幅时间上产生类似的长程相关性。我们修改了一个非常简单的双足行走被动动力学模型,通过在每次蹬地时对后脚施加冲力来纳入向前推进。通过纳入由简单比例反馈控制器调节的“感觉”和“运动”噪声项,使每次蹬地的力量在不同步之间变化。我们进行了400次行走模拟,采用了感觉噪声、运动噪声和反馈增益的不同组合。使用去趋势波动分析对每次模拟的步幅时间数据进行分析,以计算标度指数α。该指数量化了在不同时间尺度上每个步幅间隔与先前和后续步幅间隔的相关性。对于噪声项和反馈增益的不同变化,我们得到了短程相关性(α<0.5)、不相关时间序列(α=0.5)、长程相关性(0.5<α<1.0)或布朗运动(α>1.0)。我们的结果表明,一个简单的行走生物力学模型可以产生长程相关性,因此也许这些相关性并非如先前所认为的那样是高级神经元控制的复杂结果。

相似文献

1
Possible Biomechanical Origins of the Long-Range Correlations in Stride Intervals of Walking.
Physica A. 2007 Jul 1;380:259-270. doi: 10.1016/j.physa.2007.02.061.
3
Application of vibration to the soles increases long-range correlations in the stride parameters during walking.
Heliyon. 2023 Oct 12;9(10):e20946. doi: 10.1016/j.heliyon.2023.e20946. eCollection 2023 Oct.
4
Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations.
J Appl Physiol (1985). 1996 May;80(5):1448-57. doi: 10.1152/jappl.1996.80.5.1448.
5
Is walking a random walk? Evidence for long-range correlations in stride interval of human gait.
J Appl Physiol (1985). 1995 Jan;78(1):349-58. doi: 10.1152/jappl.1995.78.1.349.
6
Tactile stimuli affect long-range correlations of stride interval and stride length differently during walking.
Exp Brain Res. 2017 Apr;235(4):1185-1193. doi: 10.1007/s00221-017-4881-z. Epub 2017 Feb 10.
7
Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking.
Gait Posture. 2010 Jul;32(3):348-53. doi: 10.1016/j.gaitpost.2010.06.004.
8
Contribution of Phase Resetting to Statistical Persistence in Stride Intervals: A Modeling Study.
Front Neural Circuits. 2022 Jun 22;16:836121. doi: 10.3389/fncir.2022.836121. eCollection 2022.
9
The temporal pattern and the probability distribution of visual cueing can alter the structure of stride-to-stride variability.
Neurosci Lett. 2021 Oct 15;763:136193. doi: 10.1016/j.neulet.2021.136193. Epub 2021 Aug 22.
10
Peripheral neuropathy does not alter the fractal dynamics of stride intervals of gait.
J Appl Physiol (1985). 2007 Mar;102(3):965-71. doi: 10.1152/japplphysiol.00413.2006. Epub 2006 Nov 16.

引用本文的文献

1
Application of vibration to the soles increases long-range correlations in the stride parameters during walking.
Heliyon. 2023 Oct 12;9(10):e20946. doi: 10.1016/j.heliyon.2023.e20946. eCollection 2023 Oct.
4
Different Types of Mastoid Process Vibrations Affect Dynamic Margin of Stability Differently.
Front Hum Neurosci. 2022 Jun 27;16:896221. doi: 10.3389/fnhum.2022.896221. eCollection 2022.
5
Contribution of Phase Resetting to Statistical Persistence in Stride Intervals: A Modeling Study.
Front Neural Circuits. 2022 Jun 22;16:836121. doi: 10.3389/fncir.2022.836121. eCollection 2022.
6
The temporal pattern and the probability distribution of visual cueing can alter the structure of stride-to-stride variability.
Neurosci Lett. 2021 Oct 15;763:136193. doi: 10.1016/j.neulet.2021.136193. Epub 2021 Aug 22.
8
Fractal analyses reveal independent complexity and predictability of gait.
PLoS One. 2017 Nov 28;12(11):e0188711. doi: 10.1371/journal.pone.0188711. eCollection 2017.
9
Introducing Statistical Persistence Decay: A Quantification of Stride-to-Stride Time Interval Dependency in Human Gait.
Ann Biomed Eng. 2018 Jan;46(1):60-70. doi: 10.1007/s10439-017-1934-1. Epub 2017 Sep 25.
10
Incorporating Human-like Walking Variability in an HZD-Based Bipedal Model.
IEEE Trans Robot. 2016 Aug;32(4):943-948. doi: 10.1109/TRO.2016.2572687.

本文引用的文献

1
Multiscale entropy analysis of human gait dynamics.
Physica A. 2003 Dec 1;330(1-2):53-60. doi: 10.1016/j.physa.2003.08.022. Epub 2003 Sep 21.
2
Peripheral neuropathy does not alter the fractal dynamics of stride intervals of gait.
J Appl Physiol (1985). 2007 Mar;102(3):965-71. doi: 10.1152/japplphysiol.00413.2006. Epub 2006 Nov 16.
3
Long range correlations in the stride interval of running.
Gait Posture. 2006 Aug;24(1):120-5. doi: 10.1016/j.gaitpost.2005.08.003. Epub 2005 Sep 22.
4
Fractional Langevin model of gait variability.
J Neuroeng Rehabil. 2005 Aug 2;2:24. doi: 10.1186/1743-0003-2-24.
5
Aging, regularity and variability in maximum isometric moments.
J Biomech. 2006;39(8):1543-6. doi: 10.1016/j.jbiomech.2005.04.008. Epub 2005 Jun 8.
7
Energetic consequences of walking like an inverted pendulum: step-to-step transitions.
Exerc Sport Sci Rev. 2005 Apr;33(2):88-97. doi: 10.1097/00003677-200504000-00006.
8
Efficient bipedal robots based on passive-dynamic walkers.
Science. 2005 Feb 18;307(5712):1082-5. doi: 10.1126/science.1107799.
9
Mechanical and metabolic requirements for active lateral stabilization in human walking.
J Biomech. 2004 Jun;37(6):827-35. doi: 10.1016/j.jbiomech.2003.06.002.
10
Energy cost of walking and gait instability in healthy 65- and 80-yr-olds.
J Appl Physiol (1985). 2003 Dec;95(6):2248-56. doi: 10.1152/japplphysiol.01106.2002. Epub 2003 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验