Suppr超能文献

引入统计持久性衰减:对人类步态中步间时间间隔相关性的量化。

Introducing Statistical Persistence Decay: A Quantification of Stride-to-Stride Time Interval Dependency in Human Gait.

机构信息

Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

Ann Biomed Eng. 2018 Jan;46(1):60-70. doi: 10.1007/s10439-017-1934-1. Epub 2017 Sep 25.

Abstract

Stride-to-stride time intervals during human walking are characterised by predictability and statistical persistence quantified by sample entropy (SaEn) and detrended fluctuation analysis (DFA) which indicates a time dependency in the gait pattern. However, neither analyses quantify time dependency in a physical or physiological interpretable time scale. Recently, entropic half-life (ENT½) has been introduced as a measure of the time dependency on an interpretable time scale. A novel measure of time dependency, based on DFA, statistical persistence decay (SPD), was introduced. The present study applied SaEn, DFA, ENT½, and SPD in known theoretical signals (periodic, chaotic, and random) and stride-to-stride time intervals during overground and treadmill walking in healthy subjects. The analyses confirmed known properties of the theoretical signals. There was a significant lower predictability (p = 0.033) and lower statistical persistence (p = 0.012) during treadmill walking compared to overground walking. No significant difference was observed for ENT½ and SPD between walking condition, and they exhibited a low correlation. ENT½ showed that predictability in stride time intervals was halved after 11-14 strides and SPD indicated that the statistical persistency was deteriorated to uncorrelated noise after ~50 strides. This indicated a substantial time memory, where information from previous strides affected the future strides.

摘要

人类行走时的步间时间间隔具有可预测性和统计持久性,可通过样本熵(SaEn)和去趋势波动分析(DFA)来量化,这表明步态模式存在时间依赖性。然而,这两种分析都无法在物理或生理上可解释的时间尺度上量化时间依赖性。最近,熵半衰期(ENT½)已被引入作为衡量可解释时间尺度上的时间依赖性的度量。一种新的基于 DFA 的时间依赖性度量,即统计持久性衰减(SPD),已经被引入。本研究在已知的理论信号(周期性、混沌性和随机性)以及健康受试者在地面和跑步机上行走的步间时间间隔中应用了 SaEn、DFA、ENT½和 SPD。分析结果证实了理论信号的已知特性。与在地面行走相比,跑步机行走时的可预测性(p=0.033)和统计持久性(p=0.012)显著降低。在行走条件下,ENT½和 SPD 之间没有观察到显著差异,它们之间的相关性较低。ENT½ 表明,步间时间间隔的可预测性在 11-14 步后减半,而 SPD 表明,在~50 步后,统计持久性恶化到不相关的噪声。这表明存在大量的时间记忆,即前几步的信息会影响未来的步。

相似文献

1
Introducing Statistical Persistence Decay: A Quantification of Stride-to-Stride Time Interval Dependency in Human Gait.
Ann Biomed Eng. 2018 Jan;46(1):60-70. doi: 10.1007/s10439-017-1934-1. Epub 2017 Sep 25.
2
On the application of entropic half-life and statistical persistence decay for quantification of time dependency in human gait.
J Biomech. 2020 Jul 17;108:109893. doi: 10.1016/j.jbiomech.2020.109893. Epub 2020 Jun 13.
3
Fractal analysis of gait in people with Parkinson's disease: three minutes is not enough.
Gait Posture. 2019 May;70:229-234. doi: 10.1016/j.gaitpost.2019.02.023. Epub 2019 Feb 26.
4
On the choice of multiscale entropy algorithm for quantification of complexity in gait data.
Comput Biol Med. 2018 Dec 1;103:93-100. doi: 10.1016/j.compbiomed.2018.10.008. Epub 2018 Oct 10.
5
Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking.
Gait Posture. 2010 Jul;32(3):348-53. doi: 10.1016/j.gaitpost.2010.06.004.
6
Characteristics of stride behavior during treadmill walking and stationary stepping.
J Appl Biomech. 2014 Aug;30(4):534-41. doi: 10.1123/jab.2013-0314. Epub 2014 Jun 30.
7
The effect of treadmill walking on the stride interval dynamics of children.
Hum Mov Sci. 2010 Dec;29(6):987-98. doi: 10.1016/j.humov.2010.07.015.
8
Gait variability, fractal dynamics, and statistical regularity of treadmill and overground walking recorded with a smartphone.
Gait Posture. 2024 Jun;111:53-58. doi: 10.1016/j.gaitpost.2024.04.002. Epub 2024 Apr 17.
9
Effect of sampling frequency on fractal fluctuations during treadmill walking.
PLoS One. 2019 Nov 7;14(11):e0218908. doi: 10.1371/journal.pone.0218908. eCollection 2019.
10
Sampling frequency influences sample entropy of kinematics during walking.
Med Biol Eng Comput. 2019 Apr;57(4):759-764. doi: 10.1007/s11517-018-1920-2. Epub 2018 Nov 3.

引用本文的文献

3
The repeatability of neuromuscular activation strategies recorded in recreationally active individuals during cycling.
Eur J Appl Physiol. 2022 Apr;122(4):1045-1057. doi: 10.1007/s00421-022-04899-2. Epub 2022 Feb 15.
4
On the application of entropic half-life and statistical persistence decay for quantification of time dependency in human gait.
J Biomech. 2020 Jul 17;108:109893. doi: 10.1016/j.jbiomech.2020.109893. Epub 2020 Jun 13.
5
Bimanual load carriage alters sway patterns and step width.
Appl Ergon. 2020 Apr;84:103030. doi: 10.1016/j.apergo.2019.103030. Epub 2020 Jan 10.
6
On the choice of multiscale entropy algorithm for quantification of complexity in gait data.
Comput Biol Med. 2018 Dec 1;103:93-100. doi: 10.1016/j.compbiomed.2018.10.008. Epub 2018 Oct 10.

本文引用的文献

1
Multiscale entropy analysis of human gait dynamics.
Physica A. 2003 Dec 1;330(1-2):53-60. doi: 10.1016/j.physa.2003.08.022. Epub 2003 Sep 21.
3
Complexity of human gait pattern at different ages assessed using multiscale entropy: From development to decline.
Gait Posture. 2016 Jun;47:37-42. doi: 10.1016/j.gaitpost.2016.04.001. Epub 2016 Apr 8.
4
Gait variability and motor control in people with knee osteoarthritis.
Gait Posture. 2015 Oct;42(4):479-84. doi: 10.1016/j.gaitpost.2015.07.063. Epub 2015 Aug 7.
5
Quantification and reliability of center of pressure movement during balance tasks of varying difficulty.
Gait Posture. 2014 Jun;40(2):327-32. doi: 10.1016/j.gaitpost.2014.04.208. Epub 2014 May 9.
6
Movement variability and skills monitoring in sports.
Sports Biomech. 2013 Jun;12(2):69-92. doi: 10.1080/14763141.2012.738700.
7
The appropriate use of approximate entropy and sample entropy with short data sets.
Ann Biomed Eng. 2013 Feb;41(2):349-65. doi: 10.1007/s10439-012-0668-3. Epub 2012 Oct 12.
9
Human movement variability, nonlinear dynamics, and pathology: is there a connection?
Hum Mov Sci. 2011 Oct;30(5):869-88. doi: 10.1016/j.humov.2011.06.002. Epub 2011 Jul 29.
10
Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking.
J Neuroeng Rehabil. 2011 Feb 24;8:12. doi: 10.1186/1743-0003-8-12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验