Suppr超能文献

电惊厥发作可在辐射破坏后恢复神经发生及海马体依赖性恐惧记忆。

Electroconvulsive seizure restores neurogenesis and hippocampus-dependent fear memory after disruption by irradiation.

作者信息

Warner-Schmidt Jennifer L, Madsen Torsten M, Duman Ronald S

机构信息

Laboratory of Molecular Psychiatry, Departments of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, CT, USA.

出版信息

Eur J Neurosci. 2008 Mar;27(6):1485-93. doi: 10.1111/j.1460-9568.2008.06118.x. Epub 2008 Mar 10.

Abstract

Ongoing neurogenesis in the adult hippocampus is thought to play a role in learning and memory processes, and in response to antidepressant treatments. Low doses of irradiation (IRR) produce a significant long-lasting inhibitory effect on hippocampal neurogenesis that correlates with long-lasting behavioral deficits. Here we report that electroconvulsive seizure (ECS), which robustly increases adult neurogenesis in naïve animals, also reverses the disruption of neurogenesis produced by IRR exposure. Moreover, we find that vascular endothelial growth factor (VEGF) is an essential mediator of this effect. Expression of VEGF in the granule cell layer (GCL) of the hippocampus is decreased by IRR, and ECS administration reverses this deficit in VEGF. There is a corresponding alteration in the number of endothelial cells, which express VEGF, in the hippocampal GCL following IRR and ECS. We also find that blockade of VEGF signaling attenuates ECS-induced proliferation, and VEGF infusion partially restores proliferation in irradiated animals. To examine the functional consequences of IRR and ECS on neurogenesis, hippocampus-dependent contextual fear conditioning was assessed. We found that following disruption by IRR, ECS restores contextual learning to baseline levels at time points consistent with its effects on neurogenesis. These findings demonstrate that ECS, in part via induction of VEGF, can reverse long-term neurogenesis deficits resulting from IRR, and that these effects have functional consequences on hippocampus-dependent fear memory.

摘要

成年海马体中持续的神经发生被认为在学习和记忆过程以及对抗抑郁治疗的反应中发挥作用。低剂量辐射(IRR)对海马体神经发生产生显著的长期抑制作用,这与长期行为缺陷相关。在此我们报告,电惊厥发作(ECS)在未处理的动物中能有力地增加成年神经发生,它也能逆转由IRR暴露所导致的神经发生破坏。此外,我们发现血管内皮生长因子(VEGF)是这种效应的重要介导因子。IRR会使海马体颗粒细胞层(GCL)中VEGF的表达降低,而给予ECS可逆转VEGF的这种不足。在IRR和ECS处理后,海马体GCL中表达VEGF的内皮细胞数量有相应改变。我们还发现,阻断VEGF信号会减弱ECS诱导的增殖,而注入VEGF可部分恢复受辐射动物的增殖。为了研究IRR和ECS对神经发生的功能后果,我们评估了依赖海马体的情境恐惧条件反射。我们发现,在被IRR破坏后,ECS在与其对神经发生的影响相一致的时间点将情境学习恢复到基线水平。这些发现表明,ECS部分通过诱导VEGF,可逆转由IRR导致的长期神经发生缺陷,并且这些效应在依赖海马体的恐惧记忆方面具有功能后果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验