Suppr超能文献

CikA,一种输入途径组件,感知氧化的醌信号以在蓝藻生物钟中产生相位延迟。

CikA, an Input Pathway Component, Senses the Oxidized Quinone Signal to Generate Phase Delays in the Cyanobacterial Circadian Clock.

机构信息

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey.

Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee.

出版信息

J Biol Rhythms. 2020 Jun;35(3):227-234. doi: 10.1177/0748730419900868. Epub 2020 Jan 27.

Abstract

The circadian clock is a timekeeping system in most organisms that keeps track of the time of day. The rhythm generated by the circadian oscillator must be constantly synchronized with the environmental day/night cycle to make the timekeeping system truly advantageous. In the cyanobacterial circadian clock, quinone is a biological signaling molecule used for entraining and fine-tuning the oscillator, a process in which the external signals are transduced into biological metabolites that adjust the phase of the circadian oscillation. Among the clock proteins, the pseudo-receiver domain of KaiA and CikA can sense external cues by detecting the oxidation state of quinone, a metabolite that reflects the light/dark cycle, although the molecular mechanism is not fully understood. Here, we show the antagonistic phase shifts produced by the quinone sensing of KaiA and CikA. We introduced a new cyanobacterial circadian clock mixture that includes an input component in vitro. KaiA and CikA cause phase advances and delays, respectively, in this circadian clock mixture in response to the quinone signal. In the entrainment process, oxidized quinone modulates the functions of KaiA and CikA, which dominate alternatively at day and night in the cell. This in turn changes the phosphorylation state of KaiC-the central oscillator in cyanobacteria-ensuring full synchronization of the circadian clock. Moreover, we reemphasize the mechanistic input functionality of CikA, contrary to other reports that focus only on its output action.

摘要

生物钟是大多数生物体中的一种计时系统,用于跟踪一天中的时间。由生物钟振荡器产生的节律必须与环境的昼夜周期不断同步,以使计时系统真正具有优势。在蓝藻生物钟中,醌是一种用于驯化和微调振荡器的生物信号分子,这是一个将外部信号转导为生物代谢物的过程,这些代谢物调节生物钟振荡的相位。在时钟蛋白中,KaiA 和 CikA 的伪受体结构域可以通过检测醌的氧化状态来感知外部线索,醌是一种反映光/暗周期的代谢物,尽管其分子机制尚未完全了解。在这里,我们展示了 KaiA 和 CikA 的醌感知产生的拮抗相位移动。我们引入了一种新的蓝藻生物钟混合物,该混合物在体外包含输入成分。KaiA 和 CikA 分别对生物钟混合物中的醌信号做出相位提前和延迟的反应。在驯化过程中,氧化醌调节 KaiA 和 CikA 的功能,它们在白天和黑夜交替主宰细胞。这反过来又改变了蓝藻中央振荡器 KaiC 的磷酸化状态,确保生物钟的完全同步。此外,我们重申了 CikA 的机械输入功能,与仅关注其输出作用的其他报告形成对比。

相似文献

3
Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock.蓝藻生物钟的昼夜节律输入激酶对醌的感应
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17468-73. doi: 10.1073/pnas.0606639103. Epub 2006 Nov 6.
10
Synchronization of the circadian clock to the environment tracked in real time.实时跟踪环境变化以实现生物钟同步。
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2221453120. doi: 10.1073/pnas.2221453120. Epub 2023 Mar 20.

本文引用的文献

1
Magnesium Regulates the Circadian Oscillator in Cyanobacteria.镁调节蓝藻中的生物钟振荡器。
J Biol Rhythms. 2019 Aug;34(4):380-390. doi: 10.1177/0748730419851655. Epub 2019 Jun 20.
3
Structural basis of the day-night transition in a bacterial circadian clock.细菌生物钟中昼夜转换的结构基础。
Science. 2017 Mar 17;355(6330):1174-1180. doi: 10.1126/science.aag2516. Epub 2017 Mar 16.
4
Intracellular magnesium and the rhythms of life.细胞内镁与生命节律
Cell Cycle. 2016 Nov 16;15(22):2997-2998. doi: 10.1080/15384101.2016.1214030. Epub 2016 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验