Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey.
Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee.
J Biol Rhythms. 2020 Jun;35(3):227-234. doi: 10.1177/0748730419900868. Epub 2020 Jan 27.
The circadian clock is a timekeeping system in most organisms that keeps track of the time of day. The rhythm generated by the circadian oscillator must be constantly synchronized with the environmental day/night cycle to make the timekeeping system truly advantageous. In the cyanobacterial circadian clock, quinone is a biological signaling molecule used for entraining and fine-tuning the oscillator, a process in which the external signals are transduced into biological metabolites that adjust the phase of the circadian oscillation. Among the clock proteins, the pseudo-receiver domain of KaiA and CikA can sense external cues by detecting the oxidation state of quinone, a metabolite that reflects the light/dark cycle, although the molecular mechanism is not fully understood. Here, we show the antagonistic phase shifts produced by the quinone sensing of KaiA and CikA. We introduced a new cyanobacterial circadian clock mixture that includes an input component in vitro. KaiA and CikA cause phase advances and delays, respectively, in this circadian clock mixture in response to the quinone signal. In the entrainment process, oxidized quinone modulates the functions of KaiA and CikA, which dominate alternatively at day and night in the cell. This in turn changes the phosphorylation state of KaiC-the central oscillator in cyanobacteria-ensuring full synchronization of the circadian clock. Moreover, we reemphasize the mechanistic input functionality of CikA, contrary to other reports that focus only on its output action.
生物钟是大多数生物体中的一种计时系统,用于跟踪一天中的时间。由生物钟振荡器产生的节律必须与环境的昼夜周期不断同步,以使计时系统真正具有优势。在蓝藻生物钟中,醌是一种用于驯化和微调振荡器的生物信号分子,这是一个将外部信号转导为生物代谢物的过程,这些代谢物调节生物钟振荡的相位。在时钟蛋白中,KaiA 和 CikA 的伪受体结构域可以通过检测醌的氧化状态来感知外部线索,醌是一种反映光/暗周期的代谢物,尽管其分子机制尚未完全了解。在这里,我们展示了 KaiA 和 CikA 的醌感知产生的拮抗相位移动。我们引入了一种新的蓝藻生物钟混合物,该混合物在体外包含输入成分。KaiA 和 CikA 分别对生物钟混合物中的醌信号做出相位提前和延迟的反应。在驯化过程中,氧化醌调节 KaiA 和 CikA 的功能,它们在白天和黑夜交替主宰细胞。这反过来又改变了蓝藻中央振荡器 KaiC 的磷酸化状态,确保生物钟的完全同步。此外,我们重申了 CikA 的机械输入功能,与仅关注其输出作用的其他报告形成对比。