Lee Dong-Woo, Oztürk Yavuz, Osyczka Artur, Cooley Jason W, Daldal Fevzi
Department of Biology, Plant Science Institute.
J Biol Chem. 2008 May 16;283(20):13973-82. doi: 10.1074/jbc.M800091200. Epub 2008 Mar 14.
Photosynthetic (Ps) growth of purple non-sulfur bacteria such as Rhodobacter capsulatus depends on the cyclic electron transfer (ET) between the ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductases (cyt bc1 complex), and the photochemical reaction centers (RC), mediated by either a membrane-bound (cyt c(y)) or a freely diffusible (cyt c2) electron carrier. Previously, we constructed a functional cyt bc1-c(y) fusion complex that supported Ps growth solely relying on membrane-confined ET ( Lee, D.-W., Ozturk, Y., Mamedova, A., Osyczka, A., Cooley, J. W., and Daldal, F. (2006) Biochim. Biophys. Acta 1757, 346-352 ). In this work, we further characterized this cyt bc1-c(y) fusion complex, and used its derivatives with shorter cyt c(y) linkers as "molecular rulers" to probe the distances separating the Ps components. Comparison of the physicochemical properties of both membrane-embedded and purified cyt bc1-c(y) fusion complexes established that these enzymes were matured and assembled properly. Light-activated, time-resolved kinetic spectroscopy analyses revealed that their variants with shorter cyt c(y) linkers exhibited fast, native-like ET rates to the RC via the cyt bc1. However, shortening the length of the cyt c(y) linker decreased drastically this electronic coupling between the cyt bc1-c(y) fusion complexes and the RC, thereby limiting Ps growth. The shortest and still functional cyt c(y) linker was about 45 amino acids long, showing that the minimal distance allowed between the cyt bc1-c(y) fusion complexes and the RC and their surrounding light harvesting proteins was very short. These findings support the notion that membrane-bound Ps components form large, active structural complexes that are "hardwired" for cyclic ET.
诸如荚膜红细菌等紫色非硫细菌的光合(Ps)生长取决于泛醌(QH2):细胞色素(cyt)c氧化还原酶(细胞色素bc1复合物)与光化学反应中心(RC)之间的循环电子传递(ET),该过程由膜结合的(细胞色素c(y))或可自由扩散的(细胞色素c2)电子载体介导。此前,我们构建了一种功能性细胞色素bc1-c(y)融合复合物,该复合物仅依靠膜限制的电子传递来支持光合生长(Lee,D.-W.,Ozturk,Y.,Mamedova,A.,Osyczka,A.,Cooley,J. W.,以及Daldal,F.(2006年)《生物化学与生物物理学报》1757,346 - 352)。在这项工作中,我们进一步对这种细胞色素bc1-c(y)融合复合物进行了表征,并使用其细胞色素c(y)连接子较短的衍生物作为“分子尺”来探测光合组件之间的距离。对膜嵌入和纯化的细胞色素bc1-c(y)融合复合物的物理化学性质进行比较,确定这些酶已正确成熟并组装。光激活的时间分辨动力学光谱分析表明,其细胞色素c(y)连接子较短的变体通过细胞色素bc1向反应中心表现出快速、类似天然的电子传递速率。然而,缩短细胞色素c(y)连接子的长度会大幅降低细胞色素bc1-c(y)融合复合物与反应中心之间的这种电子耦合,从而限制光合生长。最短且仍具功能的细胞色素c(y)连接子约有45个氨基酸长,这表明细胞色素bc1-c(y)融合复合物与反应中心及其周围的光捕获蛋白之间允许的最小距离非常短。这些发现支持了这样一种观点,即膜结合的光合组件形成了大型的、活跃的结构复合物,这些复合物为循环电子传递进行了“硬连线”。