Suppr超能文献

细胞色素bc1 - 细胞色素c融合复合物揭示了光合作用组件之间功能性电子传递的距离限制。

Cytochrome bc1-cy fusion complexes reveal the distance constraints for functional electron transfer between photosynthesis components.

作者信息

Lee Dong-Woo, Oztürk Yavuz, Osyczka Artur, Cooley Jason W, Daldal Fevzi

机构信息

Department of Biology, Plant Science Institute.

出版信息

J Biol Chem. 2008 May 16;283(20):13973-82. doi: 10.1074/jbc.M800091200. Epub 2008 Mar 14.

Abstract

Photosynthetic (Ps) growth of purple non-sulfur bacteria such as Rhodobacter capsulatus depends on the cyclic electron transfer (ET) between the ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductases (cyt bc1 complex), and the photochemical reaction centers (RC), mediated by either a membrane-bound (cyt c(y)) or a freely diffusible (cyt c2) electron carrier. Previously, we constructed a functional cyt bc1-c(y) fusion complex that supported Ps growth solely relying on membrane-confined ET ( Lee, D.-W., Ozturk, Y., Mamedova, A., Osyczka, A., Cooley, J. W., and Daldal, F. (2006) Biochim. Biophys. Acta 1757, 346-352 ). In this work, we further characterized this cyt bc1-c(y) fusion complex, and used its derivatives with shorter cyt c(y) linkers as "molecular rulers" to probe the distances separating the Ps components. Comparison of the physicochemical properties of both membrane-embedded and purified cyt bc1-c(y) fusion complexes established that these enzymes were matured and assembled properly. Light-activated, time-resolved kinetic spectroscopy analyses revealed that their variants with shorter cyt c(y) linkers exhibited fast, native-like ET rates to the RC via the cyt bc1. However, shortening the length of the cyt c(y) linker decreased drastically this electronic coupling between the cyt bc1-c(y) fusion complexes and the RC, thereby limiting Ps growth. The shortest and still functional cyt c(y) linker was about 45 amino acids long, showing that the minimal distance allowed between the cyt bc1-c(y) fusion complexes and the RC and their surrounding light harvesting proteins was very short. These findings support the notion that membrane-bound Ps components form large, active structural complexes that are "hardwired" for cyclic ET.

摘要

诸如荚膜红细菌等紫色非硫细菌的光合(Ps)生长取决于泛醌(QH2):细胞色素(cyt)c氧化还原酶(细胞色素bc1复合物)与光化学反应中心(RC)之间的循环电子传递(ET),该过程由膜结合的(细胞色素c(y))或可自由扩散的(细胞色素c2)电子载体介导。此前,我们构建了一种功能性细胞色素bc1-c(y)融合复合物,该复合物仅依靠膜限制的电子传递来支持光合生长(Lee,D.-W.,Ozturk,Y.,Mamedova,A.,Osyczka,A.,Cooley,J. W.,以及Daldal,F.(2006年)《生物化学与生物物理学报》1757,346 - 352)。在这项工作中,我们进一步对这种细胞色素bc1-c(y)融合复合物进行了表征,并使用其细胞色素c(y)连接子较短的衍生物作为“分子尺”来探测光合组件之间的距离。对膜嵌入和纯化的细胞色素bc1-c(y)融合复合物的物理化学性质进行比较,确定这些酶已正确成熟并组装。光激活的时间分辨动力学光谱分析表明,其细胞色素c(y)连接子较短的变体通过细胞色素bc1向反应中心表现出快速、类似天然的电子传递速率。然而,缩短细胞色素c(y)连接子的长度会大幅降低细胞色素bc1-c(y)融合复合物与反应中心之间的这种电子耦合,从而限制光合生长。最短且仍具功能的细胞色素c(y)连接子约有45个氨基酸长,这表明细胞色素bc1-c(y)融合复合物与反应中心及其周围的光捕获蛋白之间允许的最小距离非常短。这些发现支持了这样一种观点,即膜结合的光合组件形成了大型的、活跃的结构复合物,这些复合物为循环电子传递进行了“硬连线”。

相似文献

1
2
A functional hybrid between the cytochrome bc1 complex and its physiological membrane-anchored electron acceptor cytochrome cy in Rhodobacter capsulatus.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):346-52. doi: 10.1016/j.bbabio.2006.04.025. Epub 2006 May 9.
3
Soluble variants of Rhodobacter capsulatus membrane-anchored cytochrome cy are efficient photosynthetic electron carriers.
J Biol Chem. 2008 May 16;283(20):13964-72. doi: 10.1074/jbc.M800090200. Epub 2008 Mar 14.
10
The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Q site of bacterial cytochrome bc.
Biochim Biophys Acta. 2016 Nov;1857(11):1796-1806. doi: 10.1016/j.bbabio.2016.08.007. Epub 2016 Sep 5.

引用本文的文献

1
The CopA2-Type P-Type ATPase CcoI Serves as Central Hub for -Type Cytochrome Oxidase Biogenesis.
Front Microbiol. 2021 Sep 13;12:712465. doi: 10.3389/fmicb.2021.712465. eCollection 2021.
3
Ultrafast photochemistry of the bc complex.
Phys Chem Chem Phys. 2017 Mar 1;19(9):6807-6813. doi: 10.1039/c7cp00193b.
4
The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Q site of bacterial cytochrome bc.
Biochim Biophys Acta. 2016 Nov;1857(11):1796-1806. doi: 10.1016/j.bbabio.2016.08.007. Epub 2016 Sep 5.
5
Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study.
Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1332-9. doi: 10.1016/j.bbabio.2013.03.009. Epub 2013 Mar 28.
8
Zinc inhibition of bacterial cytochrome bc(1) reveals the role of cytochrome b E295 in proton release at the Q(o) site.
Biochemistry. 2011 May 24;50(20):4263-72. doi: 10.1021/bi200230e. Epub 2011 Apr 28.
9
Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1.
J Biol Chem. 2011 May 20;286(20):18139-48. doi: 10.1074/jbc.M110.214460. Epub 2011 Mar 23.
10
Intermonomer electron transfer between the low-potential b hemes of cytochrome bc₁.
Biochemistry. 2011 Mar 15;50(10):1651-63. doi: 10.1021/bi101736v. Epub 2011 Feb 15.

本文引用的文献

1
Soluble variants of Rhodobacter capsulatus membrane-anchored cytochrome cy are efficient photosynthetic electron carriers.
J Biol Chem. 2008 May 16;283(20):13964-72. doi: 10.1074/jbc.M800090200. Epub 2008 Mar 14.
2
A functional hybrid between the cytochrome bc1 complex and its physiological membrane-anchored electron acceptor cytochrome cy in Rhodobacter capsulatus.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):346-52. doi: 10.1016/j.bbabio.2006.04.025. Epub 2006 May 9.
3
Cytochrome c(2) is not essential for photosynthetic growth of Rhodopseudomonas capsulata.
Proc Natl Acad Sci U S A. 1986 Apr;83(7):2012-6. doi: 10.1073/pnas.83.7.2012.
4
The Cytochrome bc (1) Complex and its Homologue the b (6) f Complex: Similarities and Differences.
Photosynth Res. 2004;79(1):25-44. doi: 10.1023/B:PRES.0000011926.47778.4e.
8
Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris.
Science. 2003 Dec 12;302(5652):1969-72. doi: 10.1126/science.1088892.
10
Large scale domain movement in cytochrome bc(1): a new device for electron transfer in proteins.
Trends Biochem Sci. 2001 Jul;26(7):445-51. doi: 10.1016/s0968-0004(01)01897-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验