Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
J Biol Chem. 2011 May 20;286(20):18139-48. doi: 10.1074/jbc.M110.214460. Epub 2011 Mar 23.
Production of reactive oxygen species (ROS) induces oxidative damages, decreases cellular energy conversion efficiencies, and induces metabolic diseases in humans. During respiration, cytochrome bc(1) efficiently oxidizes hydroquinone to quinone, but how it performs this reaction without any leak of electrons to O(2) to yield ROS is not understood. Using the bacterial enzyme, here we show that a conserved Tyr residue of the cytochrome b subunit of cytochrome bc(1) is critical for this process. Substitution of this residue with other amino acids decreases cytochrome bc(1) activity and enhances ROS production. Moreover, the Tyr to Cys mutation cross-links together the cytochrome b and iron-sulfur subunits and renders the bacterial enzyme sensitive to O(2) by oxidative disruption of its catalytic [2Fe-2S] cluster. Hence, this Tyr residue is essential in controlling unproductive encounters between O(2) and catalytic intermediates at the quinol oxidation site of cytochrome bc(1) to prevent ROS generation. Remarkably, the same Tyr to Cys mutation is encountered in humans with mitochondrial disorders and in Plasmodium species that are resistant to the anti-malarial drug atovaquone. These findings illustrate the harmful consequences of this mutation in human diseases.
活性氧(ROS)的产生会导致氧化损伤,降低细胞能量转换效率,并诱发人类代谢疾病。在呼吸过程中,细胞色素 bc(1)有效地将氢醌氧化为醌,但它如何在不向 O(2)泄漏电子产生 ROS 的情况下进行此反应尚不清楚。使用细菌酶,我们在这里表明,细胞色素 bc(1)细胞色素 b 亚基中的一个保守的 Tyr 残基对这个过程至关重要。用其他氨基酸取代该残基会降低细胞色素 bc(1)的活性并增加 ROS 的产生。此外,Tyr 到 Cys 的突变将细胞色素 b 和铁硫亚基交联在一起,并通过氧化破坏其催化 [2Fe-2S] 簇使细菌酶对 O(2)敏感。因此,这个 Tyr 残基对于控制细胞色素 bc(1)醌氧化位点上 O(2)和催化中间产物之间无生产性的接触至关重要,以防止 ROS 的产生。值得注意的是,在线粒体疾病患者和对抗疟药物阿托伐醌有耐药性的疟原虫物种中也发现了相同的 Tyr 到 Cys 突变。这些发现说明了这种突变在人类疾病中的有害后果。