Suppr超能文献

细胞色素 b 中保守的酪氨酸残基的缺失诱导细胞色素 bc1 产生活性氧。

Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1.

机构信息

Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Biol Chem. 2011 May 20;286(20):18139-48. doi: 10.1074/jbc.M110.214460. Epub 2011 Mar 23.

Abstract

Production of reactive oxygen species (ROS) induces oxidative damages, decreases cellular energy conversion efficiencies, and induces metabolic diseases in humans. During respiration, cytochrome bc(1) efficiently oxidizes hydroquinone to quinone, but how it performs this reaction without any leak of electrons to O(2) to yield ROS is not understood. Using the bacterial enzyme, here we show that a conserved Tyr residue of the cytochrome b subunit of cytochrome bc(1) is critical for this process. Substitution of this residue with other amino acids decreases cytochrome bc(1) activity and enhances ROS production. Moreover, the Tyr to Cys mutation cross-links together the cytochrome b and iron-sulfur subunits and renders the bacterial enzyme sensitive to O(2) by oxidative disruption of its catalytic [2Fe-2S] cluster. Hence, this Tyr residue is essential in controlling unproductive encounters between O(2) and catalytic intermediates at the quinol oxidation site of cytochrome bc(1) to prevent ROS generation. Remarkably, the same Tyr to Cys mutation is encountered in humans with mitochondrial disorders and in Plasmodium species that are resistant to the anti-malarial drug atovaquone. These findings illustrate the harmful consequences of this mutation in human diseases.

摘要

活性氧(ROS)的产生会导致氧化损伤,降低细胞能量转换效率,并诱发人类代谢疾病。在呼吸过程中,细胞色素 bc(1)有效地将氢醌氧化为醌,但它如何在不向 O(2)泄漏电子产生 ROS 的情况下进行此反应尚不清楚。使用细菌酶,我们在这里表明,细胞色素 bc(1)细胞色素 b 亚基中的一个保守的 Tyr 残基对这个过程至关重要。用其他氨基酸取代该残基会降低细胞色素 bc(1)的活性并增加 ROS 的产生。此外,Tyr 到 Cys 的突变将细胞色素 b 和铁硫亚基交联在一起,并通过氧化破坏其催化 [2Fe-2S] 簇使细菌酶对 O(2)敏感。因此,这个 Tyr 残基对于控制细胞色素 bc(1)醌氧化位点上 O(2)和催化中间产物之间无生产性的接触至关重要,以防止 ROS 的产生。值得注意的是,在线粒体疾病患者和对抗疟药物阿托伐醌有耐药性的疟原虫物种中也发现了相同的 Tyr 到 Cys 突变。这些发现说明了这种突变在人类疾病中的有害后果。

相似文献

1
Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1.
J Biol Chem. 2011 May 20;286(20):18139-48. doi: 10.1074/jbc.M110.214460. Epub 2011 Mar 23.
6
Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study.
Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1332-9. doi: 10.1016/j.bbabio.2013.03.009. Epub 2013 Mar 28.
7
The cytochrome b lysine 329 residue is critical for ubihydroquinone oxidation and proton release at the Q site of bacterial cytochrome bc.
Biochim Biophys Acta Bioenerg. 2019 Feb 1;1860(2):167-179. doi: 10.1016/j.bbabio.2018.12.002. Epub 2018 Dec 12.

引用本文的文献

2
Catalytic Reactions and Energy Conservation in the Cytochrome and Complexes of Energy-Transducing Membranes.
Chem Rev. 2021 Feb 24;121(4):2020-2108. doi: 10.1021/acs.chemrev.0c00712. Epub 2021 Jan 19.
3
Mitochondrial UQCRC1 mutations cause autosomal dominant parkinsonism with polyneuropathy.
Brain. 2020 Dec 5;143(11):3352-3373. doi: 10.1093/brain/awaa279.
4
The anti-malarial drug atovaquone potentiates platinum-mediated cancer cell death by increasing oxidative stress.
Cell Death Discov. 2020 Oct 27;6:110. doi: 10.1038/s41420-020-00343-6. eCollection 2020.
6
Bifidobacteria and the infant gut: an example of co-evolution and natural selection.
Cell Mol Life Sci. 2018 Jan;75(1):103-118. doi: 10.1007/s00018-017-2672-0. Epub 2017 Oct 5.
10
Reconstructing the Qo site of Plasmodium falciparum bc 1 complex in the yeast enzyme.
PLoS One. 2013 Aug 12;8(8):e71726. doi: 10.1371/journal.pone.0071726. eCollection 2013.

本文引用的文献

1
A glimpse into the proteome of phototrophic bacterium Rhodobacter capsulatus.
Adv Exp Med Biol. 2010;675:179-209. doi: 10.1007/978-1-4419-1528-3_11.
2
Mitochondrial metabolism and cancer.
Ann N Y Acad Sci. 2009 Oct;1177:66-73. doi: 10.1111/j.1749-6632.2009.05039.x.
3
Mitochondrial generation of free radicals and hypoxic signaling.
Trends Endocrinol Metab. 2009 Sep;20(7):332-40. doi: 10.1016/j.tem.2009.04.001. Epub 2009 Sep 3.
4
Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions.
J Biol Chem. 2009 Jun 12;284(24):16236-16245. doi: 10.1074/jbc.M809512200. Epub 2009 Apr 14.
5
Cytochrome c: functions beyond respiration.
Nat Rev Mol Cell Biol. 2008 Jul;9(7):532-42. doi: 10.1038/nrm2434.
6
The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex.
J Biol Chem. 2008 Aug 1;283(31):21649-54. doi: 10.1074/jbc.M803236200. Epub 2008 Jun 3.
7
8
9
Discovering mechanisms of signaling-mediated cysteine oxidation.
Curr Opin Chem Biol. 2008 Feb;12(1):18-24. doi: 10.1016/j.cbpa.2008.01.021. Epub 2008 Mar 7.
10
Mitochondrial complex III regulates hypoxic activation of HIF.
Cell Death Differ. 2008 Apr;15(4):660-6. doi: 10.1038/sj.cdd.4402307. Epub 2008 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验