Suppr超能文献

铁体心立方到六方密堆积相变中的非绝热性。

Nonadiabaticity in the iron bcc to hcp phase transformation.

作者信息

Johnson Donald F, Carter Emily A

机构信息

Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.

出版信息

J Chem Phys. 2008 Mar 14;128(10):104703. doi: 10.1063/1.2883592.

Abstract

Iron is known to undergo a pressure-induced phase transition from the ferromagnetic (FM) body-centered-cubic (bcc) alpha-phase to the nonmagnetic (NM) hexagonal-close-packed (hcp) epsilon-phase, with a large observed pressure hysteresis whose origin is still a matter of debate. Long ago, Burgers [Physica (Amsterdam) 1, 561 (1934)] proposed an adiabatic pathway for bcc to hcp transitions involving crystal shear followed by atom shuffles. However, a quantum mechanics search in six-dimensional stress-strain space reveals a much lower energy path, where the crystal smoothly shears along the entire path while the atoms shuffle only near the transition state (TS). The energy profile for this phase transition path exhibits a cusp at the TS and closely follows bcc and hcp diabatic energy wells. Both the cusp and the overlap with diabatic energy surfaces are hallmarks of nonadiabaticity, analogous to, e.g., electron transfer (ET) reactions in liquids. Fluctuations in the positions of FM bcc iron atoms near the TS induce magnetic quenching (akin to solvent fluctuations inducing ET), which then promotes NM hcp iron formation (akin to solvent reorganization after ET). We propose that the nonadiabatic nature of this transition at the atomic scale may contribute to the observed pressure hysteresis.

摘要

已知铁会经历压力诱导的相变,从铁磁体心立方(bcc)α相转变为非磁性六方密排(hcp)ε相,观察到的压力滞后现象很明显,其起源仍存在争议。很久以前,伯格斯[《物理学(阿姆斯特丹)》1, 561 (1934)]提出了一种从bcc到hcp转变的绝热途径,包括晶体剪切,随后是原子重排。然而,在六维应力 - 应变空间中的量子力学搜索揭示了一条能量低得多的路径,在该路径上晶体在整个路径上平滑剪切,而原子仅在过渡态(TS)附近重排。该相变路径的能量分布在TS处呈现出一个尖点,并紧密遵循bcc和hcp的非绝热能量阱。尖点以及与非绝热能量表面的重叠都是非绝热性的标志,类似于例如液体中的电子转移(ET)反应。TS附近FM bcc铁原子位置的波动会引起磁猝灭(类似于溶剂波动引起ET),进而促进NM hcp铁的形成(类似于ET后的溶剂重组)。我们认为这种原子尺度转变的非绝热性质可能导致了观察到的压力滞后现象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验